by zazencodes
Provides essential random generation utilities for integers, floats, weighted selections, shuffling, and secure token creation using Python's standard library.
Random Number MCP offers a set of tools that generate pseudorandom and cryptographically‑secure values directly from Python’s built‑in random
and secrets
modules. It exposes these capabilities as MCP tools, enabling LLMs to request numbers, selections, shuffles, or secure tokens without writing custom code.
{
"mcpServers": {
"random-number": {
"command": "uvx",
"args": ["random-number-mcp"]
}
}
}
{
"name": "random_int",
"arguments": { "low": 1, "high": 100 }
}
random_int
, random_float
, random_choices
, random_shuffle
, random_sample
).secure_token_hex
, secure_random_int
).uvx
(or uv run
) for quick local testing and production deployment.Q: Do I need any third‑party libraries?
A: No. All functionality relies on Python’s built‑in random
and secrets
modules.
Q: How can I get cryptographically secure numbers?
A: Use secure_random_int
or secure_token_hex
, which internally call secrets.randbelow
and secrets.token_hex
.
Q: Can I control the seed for reproducible results? A: The standard tools do not expose a seed parameter, but you can set the seed in your own code before invoking the MCP server if reproducibility is required.
Q: What Python version is required? A: Python 3.10 or newer.
Q: How do I run the server in development mode?
A: Clone the repo, install uv
, then run uv run random-number-mcp
. For inspection use the MCP Inspector: npx @modelcontextprotocol/inspector uv run random-number-mcp
.
Essential random number generation utilities from the Python standard library, including pseudorandom and cryptographically secure operations for integers, floats, weighted selections, list shuffling, and secure token generation.
https://github.com/user-attachments/assets/303a441a-2b10-47e3-b2a5-c8b51840e362
Tool | Purpose | Python function |
---|---|---|
random_int |
Generate random integers | random.randint() |
random_float |
Generate random floats | random.uniform() |
random_choices |
Choose items from a list (optional weights) | random.choices() |
random_shuffle |
Return a new list with items shuffled | random.sample() |
random_sample |
Choose k unique items from population | random.sample() |
secure_token_hex |
Generate cryptographically secure hex tokens | secrets.token_hex() |
secure_random_int |
Generate cryptographically secure integers | secrets.randbelow() |
Add this to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"random-number": {
"command": "uvx",
"args": ["random-number-mcp"]
}
}
}
random_int
Generate a random integer between low and high (inclusive).
Parameters:
low
(int): Lower bound (inclusive)high
(int): Upper bound (inclusive)Example:
{
"name": "random_int",
"arguments": {
"low": 1,
"high": 100
}
}
random_float
Generate a random float between low and high.
Parameters:
low
(float, optional): Lower bound (default: 0.0)high
(float, optional): Upper bound (default: 1.0)Example:
{
"name": "random_float",
"arguments": {
"low": 0.5,
"high": 2.5
}
}
random_choices
Choose k items from a population with replacement, optionally weighted.
Parameters:
population
(list): List of items to choose fromk
(int, optional): Number of items to choose (default: 1)weights
(list, optional): Weights for each item (default: equal weights)Example:
{
"name": "random_choices",
"arguments": {
"population": ["red", "blue", "green", "yellow"],
"k": 2,
"weights": [0.4, 0.3, 0.2, 0.1]
}
}
random_shuffle
Return a new list with items in random order.
Parameters:
items
(list): List of items to shuffleExample:
{
"name": "random_shuffle",
"arguments": {
"items": [1, 2, 3, 4, 5]
}
}
random_sample
Choose k unique items from population without replacement.
Parameters:
population
(list): List of items to choose fromk
(int): Number of items to chooseExample:
{
"name": "random_sample",
"arguments": {
"population": ["a", "b", "c", "d", "e"],
"k": 2
}
}
secure_token_hex
Generate a cryptographically secure random hex token.
Parameters:
nbytes
(int, optional): Number of random bytes (default: 32)Example:
{
"name": "secure_token_hex",
"arguments": {
"nbytes": 16
}
}
secure_random_int
Generate a cryptographically secure random integer below upper_bound.
Parameters:
upper_bound
(int): Upper bound (exclusive)Example:
{
"name": "secure_random_int",
"arguments": {
"upper_bound": 1000
}
}
This package provides both standard pseudorandom functions (suitable for simulations, games, etc.) and cryptographically secure functions (suitable for tokens, keys, etc.):
random_int
, random_float
, random_choices
, random_shuffle
): Use Python's random
module - fast but not cryptographically securesecure_token_hex
, secure_random_int
): Use Python's secrets
module - slower but cryptographically secure# Clone the repository
git clone https://github.com/example/random-number-mcp
cd random-number-mcp
# Install dependencies
uv sync --dev
# Run tests
uv run pytest
# Run linting
uv run ruff check --fix
uv run ruff format
# Type checking
uv run mypy src/
{
"mcpServers": {
"random-number-dev": {
"command": "uv",
"args": [
"--directory",
"<path_to_your_repo>/random-number-mcp",
"run",
"random-number-mcp"
]
}
}
}
Note: Replace <path_to_your_repo>/random-number-mcp
with the absolute path to your cloned repository.
# Build package
uv build
# Test installation
uv run --with dist/*.whl random-number-mcp
Update Version:
version
number in pyproject.toml
and src/__init__.py
.Update Changelog:
Add a new entry in CHANGELOG.md
for the release.
git diff
context.Update the @CHANGELOG.md for the latest release.
List all significant changes, bug fixes, and new features.
Here's the git diff:
[GIT_DIFF]
Commit along with any other pending changes.
Create GitHub Release:
For exploring and/or developing this server, use the MCP Inspector npm utility:
# Install MCP Inspector
npm install -g @modelcontextprotocol/inspector
# Run local development server with the inspector
npx @modelcontextprotocol/inspector uv run random-number-mcp
# Run PyPI production server with the inspector
npx @modelcontextprotocol/inspector uvx random-number-mcp
MIT License - see LICENSE file for details.
Contributions are welcome! Please feel free to submit a Pull Request.
Please log in to share your review and rating for this MCP.
{ "mcpServers": { "random-number": { "command": "uvx", "args": [ "random-number-mcp" ] } } }
Explore related MCPs that share similar capabilities and solve comparable challenges
by zed-industries
A high‑performance, multiplayer code editor designed for speed and collaboration.
by modelcontextprotocol
Model Context Protocol Servers
by modelcontextprotocol
A Model Context Protocol server for Git repository interaction and automation.
by modelcontextprotocol
A Model Context Protocol server that provides time and timezone conversion capabilities.
by cline
An autonomous coding assistant that can create and edit files, execute terminal commands, and interact with a browser directly from your IDE, operating step‑by‑step with explicit user permission.
by continuedev
Enables faster shipping of code by integrating continuous AI agents across IDEs, terminals, and CI pipelines, offering chat, edit, autocomplete, and customizable agent workflows.
by upstash
Provides up-to-date, version‑specific library documentation and code examples directly inside LLM prompts, eliminating outdated information and hallucinated APIs.
by github
Connects AI tools directly to GitHub, enabling natural‑language interactions for repository browsing, issue and pull‑request management, CI/CD monitoring, code‑security analysis, and team collaboration.
by daytonaio
Provides a secure, elastic infrastructure that creates isolated sandboxes for running AI‑generated code with sub‑90 ms startup, unlimited persistence, and OCI/Docker compatibility.