by Pantheon-Security
Securely query Google NotebookLM from Claude or other AI agents with enterprise‑grade security, post‑quantum encryption, and integrated Gemini Deep Research capabilities.
The server enables AI agents to interact with Google NotebookLM without exposing raw credentials or vulnerable browser sessions. It adds fourteen hardening layers—including post‑quantum encryption, certificate pinning, audit logging, and GDPR/SOC2/CSSF compliance—while exposing powerful features such as programmatic notebook creation, document‑upload API, deep research via Gemini, and chat‑history extraction.
npx command:
claude mcp add notebooklm -- npx @pan-sec/notebooklm-mcp@latest
serverConfig). Minimum required is a Gemini API key; enable the built‑in authentication token for extra protection.setup_auth tool – a Chrome window will open for Google sign‑in.ask_question, deep_research, upload_document, create_notebook, etc., directly from your Claude/AI workflow.deep_research, gemini_query)Q: Do I need a Google account? A: Yes. Authentication opens a Chrome session to sign in to NotebookLM; tokens are stored encrypted.
Q: Is the Gemini API mandatory?
A: It is optional but required for Deep Research and Document API features. Set GEMINI_API_KEY to enable.
Q: How are secrets protected at rest? A: All sensitive files are encrypted with a hybrid post‑quantum scheme and saved with owner‑only permissions.
Q: Can I run multiple agents simultaneously?
A: Set NOTEBOOK_PROFILE_STRATEGY=isolated (and optionally NOTEBOOK_CLONE_PROFILE=true) to give each session its own Chrome profile.
Q: What compliance reports are available?
A: Use compliance_report, export_user_data, request_erasure, and related tools to generate GDPR/SOC2/CSSF artifacts.
Zero-hallucination answers • Gemini Deep Research • 14 Security Layers • Enterprise Compliance
What's New 2026 • Deep Research • Document API • Create Notebooks • Security • Install
The only NotebookLM MCP with enterprise-grade security, post-quantum encryption, and full Gemini API integration.
Security-hardened fork of PleasePrompto/notebooklm-mcp • Maintained by Pantheon Security
v2026.1.1 brings powerful new capabilities:
| Feature | Description |
|---|---|
| 🔍 Deep Health Check | Verifies NotebookLM chat UI actually loads — catches stale sessions |
| 📊 Chat History Extraction | Recover conversations from browser, with pagination & file export |
| 🎯 Context Management | Preview mode, offset pagination, output to file — never overflow context |
| 📅 CalVer Versioning | Modern 2026.MINOR.PATCH format for predictable releases |
# Quick install
claude mcp add notebooklm -- npx @pan-sec/notebooklm-mcp@latest
| Capability | Other MCPs | This MCP |
|---|---|---|
| Query NotebookLM | ✅ Basic | ✅ + session management, quotas |
| Create notebooks programmatically | ❌ | ✅ UNIQUE |
| Gemini Deep Research | ❌ | ✅ EXCLUSIVE |
| Document API (no browser) | ❌ | ✅ EXCLUSIVE |
| Post-quantum encryption | ❌ | ✅ Future-proof |
| Enterprise compliance | ❌ | ✅ GDPR/SOC2/CSSF |
| Chat history extraction | ❌ | ✅ NEW |
| Deep health verification | ❌ | ✅ NEW |
The most powerful research capability for AI agents — now in your MCP toolkit.
v1.8.0 introduces the Gemini Interactions API as a stable, API-based research backend alongside browser automation. This gives your agents access to Google's state-of-the-art Deep Research agent.
| Challenge | Solution |
|---|---|
| Browser UI changes break automation | Gemini API is stable and versioned |
| Need comprehensive research but no research agent | Deep Research agent does it for you |
| Want current information with citations | Google Search grounding built-in |
| Need reliable, fast queries | API-based = no UI dependencies |
deep_research — Comprehensive Research Agent"Research the security implications of post-quantum cryptography adoption in financial services"
gemini_query — Fast Grounded Queries"What are the latest CVEs for Log4j in 2025?" (with Google Search)
"Calculate the compound interest on $10,000 at 5% over 10 years" (with code execution)
"Summarize this security advisory: [URL]" (with URL context)
gemini-2.5-flash (fast), gemini-2.5-pro (powerful), gemini-3-flash-preview (latest)get_research_status — Background Task MonitoringRun deep research in the background and check progress:
"Start researching [topic] in the background"
... continue other work ...
"Check research status for interaction_abc123"
┌──────────────────────────────────────────────────────────────────────────────┐
│ NotebookLM MCP Server v2026.1.x │
├──────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌────────────────────────────────┐ ┌──────────────────────────────────┐ │
│ │ BROWSER AUTOMATION │ │ GEMINI API │ │
│ │ (Your Documents) │ │ (Research & Documents) │ │
│ ├────────────────────────────────┤ ├──────────────────────────────────┤ │
│ │ │ │ │ │
│ │ QUERY │ │ RESEARCH │ │
│ │ • ask_question │ │ • deep_research │ │
│ │ • get_notebook_chat_history │ │ • gemini_query │ │
│ │ │ │ • get_research_status │ │
│ │ CREATE & MANAGE │ │ │ │
│ │ • create_notebook │ │ DOCUMENTS │ │
│ │ • batch_create_notebooks │ │ • upload_document │ │
│ │ • manage_sources │ │ • query_document │ │
│ │ • generate_audio │ │ • query_chunked_document │ │
│ │ • sync_notebook │ │ • list/delete_document │ │
│ │ │ │ │ │
│ │ HEALTH & SESSIONS v2026 │ │ │ │
│ │ • get_health (deep_check) │ │ Fast API • 48h retention │ │
│ │ • get_query_history │ │ Auto-chunking for large PDFs │ │
│ └────────────────────────────────┘ └──────────────────────────────────┘ │
│ │
│ ┌─────────────────────────────────┐ │
│ │ 14 SECURITY LAYERS │ │
│ │ Post-Quantum • Audit Logs │ │
│ │ Cert Pinning • Memory Wipe │ │
│ │ GDPR • SOC2 • CSSF Ready │ │
│ └─────────────────────────────────┘ │
└──────────────────────────────────────────────────────────────────────────────┘
# Required for Gemini features
GEMINI_API_KEY=your-api-key # Get from https://aistudio.google.com/apikey
# Optional settings
GEMINI_DEFAULT_MODEL=gemini-2.5-flash # Default model
GEMINI_DEEP_RESEARCH_ENABLED=true # Enable Deep Research
GEMINI_TIMEOUT_MS=30000 # API timeout
| Task | Best Tool | Why |
|---|---|---|
| Questions about YOUR documents | ask_question |
Grounded on your uploaded sources |
| Comprehensive topic research | deep_research |
Multi-source synthesis with citations |
| Current events / recent info | gemini_query + google_search |
Live web data |
| Code calculations | gemini_query + code_execution |
Reliable computation |
| Analyze a webpage | gemini_query + url_context |
Direct page analysis |
| Quick PDF/document analysis | upload_document + query_document |
Fast API, no browser (NEW!) |
Upload and query documents directly via Gemini API — no browser automation needed.
v1.9.0 introduces the Gemini Files API for fast, reliable document analysis. Upload PDFs, analyze them instantly, and delete when done.
| Feature | Browser Mode | Document API |
|---|---|---|
| Speed | Seconds | Milliseconds |
| Reliability | UI-dependent | API-stable |
| File Support | Via NotebookLM | 50MB PDFs, 1000 pages |
| Retention | Permanent | 48 hours |
| Setup | Auth + cookies | Just API key |
upload_document — Fast Document UploadUpload any document to Gemini for instant querying:
Upload /path/to/research-paper.pdf
query_document — Ask Questions About Documents"What are the main findings in this research paper?"
"Summarize section 3 of the document"
"Extract all statistics mentioned in the PDF"
list_documents — See All Uploaded FilesList all my uploaded documents
Shows file names, sizes, MIME types, and expiration times.
delete_document — Clean Up Sensitive FilesDelete file xyz123
Immediately remove files (don't wait for 48h expiration).
1. upload_document("/research/paper.pdf")
→ Returns: files/abc123
2. query_document("files/abc123", "What methodology was used?")
→ Returns: "The paper uses a mixed-methods approach combining..."
3. query_document("files/abc123", "List all cited authors")
→ Returns: "Smith et al. (2024), Johnson (2023)..."
4. delete_document("files/abc123")
→ File removed
No file size limits — PDFs of any size are automatically handled.
When you upload a PDF that exceeds Gemini's limits (50MB or 1000 pages), the system automatically:
upload_document("/research/massive-2000-page-report.pdf")
→ Returns:
{
"wasChunked": true,
"totalPages": 2000,
"chunks": [
{ "fileName": "files/abc1", "pageStart": 1, "pageEnd": 500 },
{ "fileName": "files/abc2", "pageStart": 501, "pageEnd": 1000 },
{ "fileName": "files/abc3", "pageStart": 1001, "pageEnd": 1500 },
{ "fileName": "files/abc4", "pageStart": 1501, "pageEnd": 2000 }
],
"allFileNames": ["files/abc1", "files/abc2", "files/abc3", "files/abc4"]
}
query_chunked_document — Query All Chunks at OnceFor chunked documents, use this tool to query all parts and get an aggregated answer:
query_chunked_document(
file_names: ["files/abc1", "files/abc2", "files/abc3", "files/abc4"],
query: "What are the key recommendations in this report?"
)
→ Queries each chunk, then synthesizes a unified answer
| Scenario | Use |
|---|---|
| Quick one-off document analysis | Document API — fast, no setup |
| Building a permanent knowledge base | NotebookLM — permanent storage |
| Analyzing sensitive documents | Document API — 48h auto-delete |
| Multi-source research over time | NotebookLM — organized notebooks |
| CI/CD pipeline document processing | Document API — API-native |
| Large PDFs (1000+ pages) | Document API — auto-chunking |
Create NotebookLM notebooks entirely from code — no manual clicks required.
Most MCP servers can only read from NotebookLM. This one can create notebooks, add sources, and generate audio — all programmatically.
create_notebook — Build Notebooks InstantlyCreate a complete notebook with multiple sources in one command:
{
"name": "Security Research 2025",
"sources": [
{ "type": "url", "value": "https://owasp.org/Top10" },
{ "type": "file", "value": "/path/to/security-report.pdf" },
{ "type": "text", "value": "Custom analysis notes...", "title": "My Notes" }
],
"description": "OWASP security best practices",
"topics": ["security", "owasp", "vulnerabilities"]
}
Supported source types:
batch_create_notebooks — Scale UpCreate up to 10 notebooks in a single operation:
{
"notebooks": [
{ "name": "React Docs", "sources": [{ "type": "url", "value": "https://react.dev/reference" }] },
{ "name": "Node.js API", "sources": [{ "type": "url", "value": "https://nodejs.org/api/" }] },
{ "name": "TypeScript Handbook", "sources": [{ "type": "url", "value": "https://www.typescriptlang.org/docs/" }] }
]
}
Perfect for:
manage_sources — Dynamic Source ManagementAdd or remove sources from existing notebooks:
{
"notebook_id": "abc123",
"action": "add",
"sources": [{ "type": "url", "value": "https://new-documentation.com" }]
}
generate_audio — Audio Overview CreationGenerate NotebookLM's famous "Audio Overview" podcasts programmatically:
"Generate an audio overview for my Security Research notebook"
sync_notebook — Keep Sources UpdatedSync notebook sources from a local directory:
{
"notebook_id": "abc123",
"directory": "/path/to/docs",
"patterns": ["*.md", "*.pdf"]
}
| Traditional Workflow | With This MCP |
|---|---|
| Manually create notebook in browser | create_notebook → done |
| Click "Add source" for each document | Batch add in single command |
| Navigate UI to generate audio | generate_audio → podcast ready |
| Update sources by hand | sync_notebook from local files |
Your agent can now build entire knowledge bases autonomously.
Track your research and recover conversations from NotebookLM notebooks.
get_query_history — Review Past Research (v1.10.8)All queries made through the MCP are automatically logged for review:
"Show me my recent NotebookLM queries"
"Find queries about security from last week"
"What did I ask the fine-tuning notebook?"
get_notebook_chat_history — Extract Browser Conversations (v2026.1.0)Extract conversation history directly from a NotebookLM notebook's chat UI with context management to avoid overwhelming your AI context window:
Quick audit (preview mode):
{ "notebook_id": "my-research", "preview_only": true }
Returns message counts without content — test the water before extracting.
Export to file (avoids context overflow):
{ "notebook_id": "my-research", "output_file": "/tmp/chat-history.json" }
Dumps full history to disk instead of returning to context.
Paginate through history:
{ "notebook_id": "my-research", "limit": 20, "offset": 0 }
{ "notebook_id": "my-research", "limit": 20, "offset": 20 }
Page through large histories without loading everything at once.
Returns:
{
"notebook_url": "https://notebooklm.google.com/notebook/xxx",
"notebook_name": "My Research",
"total_messages": 150,
"returned_messages": 40,
"user_messages": 75,
"assistant_messages": 75,
"offset": 0,
"has_more": true,
"messages": [...]
}
Use cases:
The original NotebookLM MCP is excellent for productivity — but MCP servers handle sensitive data:
This fork adds 14 security hardening layers to protect that data.
| Layer | Feature | Protection |
|---|---|---|
| 🔐 | Post-Quantum Encryption | ML-KEM-768 + ChaCha20-Poly1305 hybrid |
| 🔍 | Secrets Scanning | Detects 30+ credential patterns (AWS, GitHub, Slack...) |
| 📌 | Certificate Pinning | Blocks MITM attacks on Google connections |
| 🧹 | Memory Scrubbing | Zeros sensitive data after use |
| 📝 | Audit Logging | Tamper-evident logs with hash chains |
| ⏱️ | Session Timeout | 8h hard limit + 30m inactivity auto-logout |
| 🎫 | MCP Authentication | Token-based auth with brute-force lockout |
| 🛡️ | Response Validation | Detects prompt injection attempts |
| ✅ | Input Validation | URL whitelisting, sanitization |
| 🚦 | Rate Limiting | Per-session request throttling |
| 🙈 | Log Sanitization | Credentials masked in all output |
| 🐍 | MEDUSA Integration | Automated security scanning |
| 🖥️ | Cross-Platform | Native support for Linux, macOS, Windows |
Traditional encryption (RSA, ECDH) will be broken by quantum computers. This fork uses hybrid encryption:
ML-KEM-768 (Kyber) + ChaCha20-Poly1305
Even if one algorithm is broken, the other remains secure.
Full native support for all major operating systems:
| Platform | File Permissions | Data Directory |
|---|---|---|
| Linux | Unix chmod (0o600/0o700) | ~/.local/share/notebooklm-mcp/ |
| macOS | Unix chmod (0o600/0o700) | ~/Library/Application Support/notebooklm-mcp/ |
| Windows | ACLs via icacls (current user only) | %LOCALAPPDATA%\notebooklm-mcp\ |
All sensitive files (encryption keys, auth tokens, audit logs) are automatically protected with owner-only permissions on every platform.
Full compliance support for regulated industries:
| Regulation | Features |
|---|---|
| GDPR | Consent management, DSAR handling, right to erasure, data portability |
| SOC2 Type II | Hash-chained audit logs, incident response, availability monitoring |
| CSSF | 7-year retention, SIEM integration, policy documentation |
compliance_dashboard - Real-time compliance status
compliance_report - Generate audit reports (JSON/CSV/HTML)
compliance_evidence - Collect evidence packages
grant_consent - Record user consent
submit_dsar - Handle data subject requests
request_erasure - Right to be forgotten
export_user_data - Data portability export
create_incident - Security incident management
...and 8 more
See COMPLIANCE-SPEC.md for full documentation.
claude mcp add notebooklm -- npx @pan-sec/notebooklm-mcp@latest
claude mcp add notebooklm \
--env NLMCP_AUTH_ENABLED=true \
--env NLMCP_AUTH_TOKEN=$(openssl rand -base64 32) \
--env GEMINI_API_KEY=your-gemini-api-key \
-- npx @pan-sec/notebooklm-mcp@latest
codex mcp add notebooklm -- npx @pan-sec/notebooklm-mcp@latest
Add to ~/.cursor/mcp.json:
{
"mcpServers": {
"notebooklm": {
"command": "npx",
"args": ["-y", "@pan-sec/notebooklm-mcp@latest"],
"env": {
"NLMCP_AUTH_ENABLED": "true",
"NLMCP_AUTH_TOKEN": "your-secure-token",
"GEMINI_API_KEY": "your-gemini-api-key"
}
}
}
}
Add to ~/.gemini/antigravity/mcp_config.json (macOS/Linux) or %USERPROFILE%\.gemini\antigravity\mcp_config.json (Windows):
{
"mcpServers": {
"notebooklm": {
"command": "npx",
"args": ["-y", "@pan-sec/notebooklm-mcp@latest"]
}
}
}
With optional env vars:
{
"mcpServers": {
"notebooklm": {
"command": "npx",
"args": ["-y", "@pan-sec/notebooklm-mcp@latest"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key"
}
}
}
}
Note: Antigravity does NOT support
${workspaceFolder}variables. Use absolute paths.
Add to ~/.config/opencode/opencode.json (global) or opencode.json in project root:
{
"$schema": "https://opencode.ai/config.json",
"mcp": {
"notebooklm": {
"type": "local",
"command": ["npx", "-y", "@pan-sec/notebooklm-mcp@latest"],
"enabled": true,
"environment": {
"GEMINI_API_KEY": "your-gemini-api-key"
}
}
}
}
Note: OpenCode uses
"mcp"(not"mcpServers") and"command"is an array.
Add to ~/.codeium/windsurf/mcp_config.json:
{
"mcpServers": {
"notebooklm": {
"command": "npx",
"args": ["-y", "@pan-sec/notebooklm-mcp@latest"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key"
}
}
}
}
Add to your VS Code settings.json:
{
"mcp": {
"servers": {
"notebooklm": {
"command": "npx",
"args": ["-y", "@pan-sec/notebooklm-mcp@latest"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key"
}
}
}
}
}
Most MCP clients use this standard format:
{
"mcpServers": {
"notebooklm": {
"command": "npx",
"args": ["-y", "@pan-sec/notebooklm-mcp@latest"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key"
}
}
}
}
Common config locations:
| Client | Config File |
|---|---|
| Claude Desktop | ~/.config/claude/claude_desktop_config.json |
| Cursor | ~/.cursor/mcp.json |
| Antigravity | ~/.gemini/antigravity/mcp_config.json |
| OpenCode | ~/.config/opencode/opencode.json |
| Windsurf | ~/.codeium/windsurf/mcp_config.json |
"Log me in to NotebookLM"
Chrome opens → sign in with Google
Go to notebooklm.google.com → Create notebook → Upload docs → Share link
"Research [topic] using this NotebookLM: [link]"
"Use deep research to investigate [complex topic]"
| Tool | Description | Backend |
|---|---|---|
ask_question |
Query your NotebookLM notebooks | Browser |
deep_research |
Comprehensive research with citations | Gemini API |
gemini_query |
Fast queries with grounding tools | Gemini API |
get_research_status |
Check background research progress | Gemini API |
| Tool | Description |
|---|---|
add_notebook |
Add notebook to library |
list_notebooks |
List all notebooks |
get_notebook |
Get notebook details |
update_notebook |
Update notebook metadata |
remove_notebook |
Remove from library |
select_notebook |
Set active notebook |
search_notebooks |
Search by query |
| Tool | Description |
|---|---|
manage_sources |
Add/remove/list sources |
generate_audio |
Create Audio Overview |
sync_notebook |
Sync sources from local files |
| Tool | Description |
|---|---|
list_sessions |
View active sessions |
close_session |
Close a session |
reset_session |
Reset session chat |
get_health |
Server health check (with deep_check for UI verification) |
get_query_history |
Review past queries with search/filter |
get_notebook_chat_history |
Extract browser conversations (pagination, file export) |
setup_auth |
Initial authentication |
re_auth |
Re-authenticate |
cleanup_data |
Deep cleanup utility |
get_library_stats |
Library statistics |
get_quota |
Check usage limits and remaining quota |
16 compliance tools for GDPR, SOC2, and CSSF requirements.
| Data | Protection |
|---|---|
| Browser cookies | Post-quantum encrypted at rest |
| Session tokens | Auto-expire + memory scrubbing |
| Query history | Audit logged with tamper detection |
| Google connection | Certificate pinned (MITM blocked) |
| Log output | Credentials auto-redacted |
| API responses | Scanned for leaked secrets |
| Gemini API key | Secure memory handling |
All security features are enabled by default. Override via environment variables:
# Authentication
NLMCP_AUTH_ENABLED=true
NLMCP_AUTH_TOKEN=your-secret-token
# Gemini API (v1.8.0+)
GEMINI_API_KEY=your-api-key
GEMINI_DEFAULT_MODEL=gemini-2.5-flash
GEMINI_DEEP_RESEARCH_ENABLED=true
GEMINI_TIMEOUT_MS=30000
# Encryption
NLMCP_USE_POST_QUANTUM=true
NLMCP_ENCRYPTION_KEY=base64-32-bytes # Optional custom key
# Session Limits
NLMCP_SESSION_MAX_LIFETIME=28800 # 8 hours
NLMCP_SESSION_INACTIVITY=1800 # 30 minutes
# Secrets Scanning
NLMCP_SECRETS_SCANNING=true
NLMCP_SECRETS_BLOCK=false # Block on detection
NLMCP_SECRETS_REDACT=true # Auto-redact
# Certificate Pinning
NLMCP_CERT_PINNING=true
# Audit Logging
NLMCP_AUDIT_ENABLED=true
# Multi-Session Support (v2026.1.2+)
NOTEBOOK_PROFILE_STRATEGY=isolated # isolated|single|auto
NOTEBOOK_CLONE_PROFILE=true # Clone auth from base profile
Run multiple Claude Code sessions simultaneously with isolated browser profiles:
# Add to ~/.bashrc or ~/.zshrc
export NOTEBOOK_PROFILE_STRATEGY=isolated
export NOTEBOOK_CLONE_PROFILE=true
| Variable | Values | Description |
|---|---|---|
NOTEBOOK_PROFILE_STRATEGY |
single, auto, isolated |
isolated = separate profile per session |
NOTEBOOK_CLONE_PROFILE |
true, false |
Clone authenticated base profile into isolated instances |
How it works:
See SECURITY.md for complete configuration reference.
Run MEDUSA security scanner:
npm run security-scan
Or integrate in CI/CD:
- name: Security Scan
run: npx @pan-sec/notebooklm-mcp && npm run security-scan
| Feature | Others | @pan-sec/notebooklm-mcp |
|---|---|---|
| Zero-hallucination Q&A | ✅ | ✅ |
| Library management | ✅ | ✅ |
| Create Notebooks Programmatically | ❌ | ✅ EXCLUSIVE |
| Batch Create (10 notebooks) | ❌ | ✅ EXCLUSIVE |
| Gemini Deep Research | ❌ | ✅ EXCLUSIVE |
| Document API (no browser) | ❌ | ✅ EXCLUSIVE |
| Auto-chunking (1000+ page PDFs) | ❌ | ✅ EXCLUSIVE |
| Chat History Extraction | ❌ | ✅ NEW |
| Deep Health Verification | ❌ | ✅ NEW |
| Query History & Search | ❌ | ✅ |
| Quota Management | ❌ | ✅ |
| Source Management (add/remove) | ❌ | ✅ |
| Audio Overview Generation | ❌ | ✅ |
| Sync from Local Directories | ❌ | ✅ |
| Feature | Others | @pan-sec/notebooklm-mcp |
|---|---|---|
| Cross-platform (Linux/macOS/Windows) | ⚠️ Partial | ✅ Full |
| Post-quantum encryption | ❌ | ✅ ML-KEM-768 + ChaCha20 |
| Secrets scanning | ❌ | ✅ 30+ patterns |
| Certificate pinning | ❌ | ✅ Google MITM protection |
| Memory scrubbing | ❌ | ✅ Zero-on-free |
| Audit logging | ❌ | ✅ Hash-chained |
| MCP authentication | ❌ | ✅ Token + lockout |
| Prompt injection detection | ❌ | ✅ Response validation |
| GDPR Compliance | ❌ | ✅ Full |
| SOC2 Type II | ❌ | ✅ Full |
| CSSF (Luxembourg) | ❌ | ✅ Full |
Bottom line: If you need more than basic queries, or care about security, there's only one choice.
| Version | Highlights |
|---|---|
| v2026.1.1 | 🔍 Deep health check — verifies NotebookLM chat UI actually loads |
| v2026.1.0 | 📊 Chat history extraction with context management, CalVer versioning |
| v1.10.8 | Query history logging, quota tracking |
| v1.10.0 | Auto-chunking for large PDFs (1000+ pages) |
| v1.9.0 | Document API: upload, query, delete via Gemini Files API |
| v1.8.0 | Gemini Deep Research, Query with Grounding, Background Tasks |
| v1.7.0 | Programmatic notebook creation, batch operations, audio generation |
| v1.6.0 | Enterprise compliance: GDPR, SOC2 Type II, CSSF |
| v1.5.0 | Cross-platform support (Windows ACLs, macOS, Linux) |
| v1.4.0 | Post-quantum encryption, secrets scanning |
Found a security issue? Do not open a public GitHub issue.
Email: support@pantheonsecurity.io
MIT — Same as original.
Security hardened with 🔒 by Pantheon Security
Powered by Google Gemini 🚀
Full Security Documentation • Compliance Guide • Report Vulnerability
Please log in to share your review and rating for this MCP.
Explore related MCPs that share similar capabilities and solve comparable challenges
by reading-plus-ai
Enables comprehensive, well‑cited research reports by elaborating questions, generating sub‑questions, performing web searches, analyzing content, and formatting findings into structured artifacts.
by takashiishida
Fetches arXiv LaTeX sources and provides them via MCP for LLM clients to accurately interpret mathematical content in scientific papers.
by wheattoast11
Orchestrates a network of asynchronous agents and streaming swarms to conduct ensemble‑consensus research, automatically creating indexed PGlite databases in WebAssembly and providing semantic, hybrid, and SQL search capabilities.
by prashalruchiranga
Interact with the arXiv API using natural language to retrieve article metadata, download PDFs, perform searches, and load full texts into large language model contexts.
by drAbreu
Provides author disambiguation, institution resolution, work retrieval, citation analysis, and ORCID matching via the OpenAlex API, delivering streamlined, structured responses optimized for AI‑agent consumption.
by ali-kh7
Aggregates web data via Tavily's Search and Crawl APIs, structures the results for LLM-friendly markdown generation.
by universal-mcp
Provides a standardized API to interact with Semantic Scholar's tools and services, enabling unified access through the Universal MCP framework.
by netdata
Delivers real‑time, per‑second infrastructure monitoring with zero‑configuration agents, on‑edge machine‑learning anomaly detection, and built‑in dashboards.
by modelcontextprotocol
A Model Context Protocol server for Git repository interaction and automation.
{
"mcpServers": {
"notebooklm": {
"command": "npx",
"args": [
"-y",
"@pan-sec/notebooklm-mcp"
],
"env": {
"NLMCP_AUTH_ENABLED": "true",
"NLMCP_AUTH_TOKEN": "<YOUR_SECURE_TOKEN>",
"GEMINI_API_KEY": "<YOUR_GEMINI_API_KEY>"
}
}
}
}claude mcp add notebooklm npx -y @pan-sec/notebooklm-mcp