by qdrant
Provides a Model Context Protocol server that stores and retrieves semantic memories using Qdrant vector search, acting as a semantic memory layer.
Mcp Server Qdrant implements a Model Context Protocol server that uses Qdrant as a vector database to keep and fetch memories. It offers tools for storing arbitrary information with optional metadata and for performing semantic searches over the stored data.
QDRANT_URL (or QDRANT_LOCAL_PATH), COLLECTION_NAME, and optionally QDRANT_API_KEY, EMBEDDING_PROVIDER, and EMBEDDING_MODEL.QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="my-collection" \
uvx mcp-server-qdrant
docker run -p 8000:8000 \
-e FASTMCP_HOST="0.0.0.0" \
-e QDRANT_URL="http://your-qdrant:6333" \
-e COLLECTION_NAME="your-collection" \
mcp-server-qdrant
COLLECTION_NAME=mcp-dev fastmcp dev src/mcp_server_qdrant/server.py
stdio, sse, or streamable-http). For remote clients, sse is common:
uvx mcp-server-qdrant --transport sse
qdrant-store for saving information and metadata; qdrant-find for semantic retrieval.sentence-transformers/all-MiniLM-L6-v2.uvx, Docker, or FastMCP development mode.stdio, sse, streamable-http).Q: Can I run the server without a remote Qdrant instance?
A: Yes. Set QDRANT_LOCAL_PATH to a filesystem path to start an embedded Qdrant instance.
Q: What happens if both QDRANT_URL and QDRANT_LOCAL_PATH are set?
A: The server will reject the configuration; only one of them may be provided.
Q: How do I change the embedding model?
A: Set EMBEDDING_PROVIDER (currently only fastembed) and EMBEDDING_MODEL to the desired model name.
Q: Which transport should I use for VS Code or Cursor?
A: sse is recommended for remote connections; stdio works for local MCP clients.
Q: How can I customize the tool descriptions?
A: Provide TOOL_STORE_DESCRIPTION and TOOL_FIND_DESCRIPTION environment variables with custom text.
The Model Context Protocol (MCP) is an open protocol that enables seamless integration between LLM applications and external data sources and tools. Whether you're building an AI-powered IDE, enhancing a chat interface, or creating custom AI workflows, MCP provides a standardized way to connect LLMs with the context they need.
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
An official Model Context Protocol server for keeping and retrieving memories in the Qdrant vector search engine. It acts as a semantic memory layer on top of the Qdrant database.
qdrant-store
information (string): Information to storemetadata (JSON): Optional metadata to storecollection_name (string): Name of the collection to store the information in. This field is required if there are no default collection name.
If there is a default collection name, this field is not enabled.qdrant-find
query (string): Query to use for searchingcollection_name (string): Name of the collection to store the information in. This field is required if there are no default collection name.
If there is a default collection name, this field is not enabled.The configuration of the server is done using environment variables:
| Name | Description | Default Value |
|---|---|---|
QDRANT_URL |
URL of the Qdrant server | None |
QDRANT_API_KEY |
API key for the Qdrant server | None |
COLLECTION_NAME |
Name of the default collection to use. | None |
QDRANT_LOCAL_PATH |
Path to the local Qdrant database (alternative to QDRANT_URL) |
None |
EMBEDDING_PROVIDER |
Embedding provider to use (currently only "fastembed" is supported) | fastembed |
EMBEDDING_MODEL |
Name of the embedding model to use | sentence-transformers/all-MiniLM-L6-v2 |
TOOL_STORE_DESCRIPTION |
Custom description for the store tool | See default in settings.py |
TOOL_FIND_DESCRIPTION |
Custom description for the find tool | See default in settings.py |
Note: You cannot provide both QDRANT_URL and QDRANT_LOCAL_PATH at the same time.
[!IMPORTANT] Command-line arguments are not supported anymore! Please use environment variables for all configuration.
Since mcp-server-qdrant is based on FastMCP, it also supports all the FastMCP environment variables. The most
important ones are listed below:
| Environment Variable | Description | Default Value |
|---|---|---|
FASTMCP_DEBUG |
Enable debug mode | false |
FASTMCP_LOG_LEVEL |
Set logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL) | INFO |
FASTMCP_HOST |
Host address to bind the server to | 127.0.0.1 |
FASTMCP_PORT |
Port to run the server on | 8000 |
FASTMCP_WARN_ON_DUPLICATE_RESOURCES |
Show warnings for duplicate resources | true |
FASTMCP_WARN_ON_DUPLICATE_TOOLS |
Show warnings for duplicate tools | true |
FASTMCP_WARN_ON_DUPLICATE_PROMPTS |
Show warnings for duplicate prompts | true |
FASTMCP_DEPENDENCIES |
List of dependencies to install in the server environment | [] |
When using uvx no specific installation is needed to directly run mcp-server-qdrant.
QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="my-collection" \
EMBEDDING_MODEL="sentence-transformers/all-MiniLM-L6-v2" \
uvx mcp-server-qdrant
The server supports different transport protocols that can be specified using the --transport flag:
QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="my-collection" \
uvx mcp-server-qdrant --transport sse
Supported transport protocols:
stdio (default): Standard input/output transport, might only be used by local MCP clientssse: Server-Sent Events transport, perfect for remote clientsstreamable-http: Streamable HTTP transport, perfect for remote clients, more recent than SSEThe default transport is stdio if not specified.
When SSE transport is used, the server will listen on the specified port and wait for incoming connections. The default
port is 8000, however it can be changed using the FASTMCP_PORT environment variable.
QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="my-collection" \
FASTMCP_PORT=1234 \
uvx mcp-server-qdrant --transport sse
A Dockerfile is available for building and running the MCP server:
# Build the container
docker build -t mcp-server-qdrant .
# Run the container
docker run -p 8000:8000 \
-e FASTMCP_HOST="0.0.0.0" \
-e QDRANT_URL="http://your-qdrant-server:6333" \
-e QDRANT_API_KEY="your-api-key" \
-e COLLECTION_NAME="your-collection" \
mcp-server-qdrant
[!TIP] Please note that we set
FASTMCP_HOST="0.0.0.0"to make the server listen on all network interfaces. This is necessary when running the server in a Docker container.
To install Qdrant MCP Server for Claude Desktop automatically via Smithery:
npx @smithery/cli install mcp-server-qdrant --client claude
To use this server with the Claude Desktop app, add the following configuration to the "mcpServers" section of your
claude_desktop_config.json:
{
"qdrant": {
"command": "uvx",
"args": ["mcp-server-qdrant"],
"env": {
"QDRANT_URL": "https://xyz-example.eu-central.aws.cloud.qdrant.io:6333",
"QDRANT_API_KEY": "your_api_key",
"COLLECTION_NAME": "your-collection-name",
"EMBEDDING_MODEL": "sentence-transformers/all-MiniLM-L6-v2"
}
}
}
For local Qdrant mode:
{
"qdrant": {
"command": "uvx",
"args": ["mcp-server-qdrant"],
"env": {
"QDRANT_LOCAL_PATH": "/path/to/qdrant/database",
"COLLECTION_NAME": "your-collection-name",
"EMBEDDING_MODEL": "sentence-transformers/all-MiniLM-L6-v2"
}
}
}
This MCP server will automatically create a collection with the specified name if it doesn't exist.
By default, the server will use the sentence-transformers/all-MiniLM-L6-v2 embedding model to encode memories.
For the time being, only FastEmbed models are supported.
This MCP server can be used with any MCP-compatible client. For example, you can use it with Cursor and VS Code, which provide built-in support for the Model Context Protocol.
You can configure this MCP server to work as a code search tool for Cursor or Windsurf by customizing the tool descriptions:
QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="code-snippets" \
TOOL_STORE_DESCRIPTION="Store reusable code snippets for later retrieval. \
The 'information' parameter should contain a natural language description of what the code does, \
while the actual code should be included in the 'metadata' parameter as a 'code' property. \
The value of 'metadata' is a Python dictionary with strings as keys. \
Use this whenever you generate some code snippet." \
TOOL_FIND_DESCRIPTION="Search for relevant code snippets based on natural language descriptions. \
The 'query' parameter should describe what you're looking for, \
and the tool will return the most relevant code snippets. \
Use this when you need to find existing code snippets for reuse or reference." \
uvx mcp-server-qdrant --transport sse # Enable SSE transport
In Cursor/Windsurf, you can then configure the MCP server in your settings by pointing to this running server using SSE transport protocol. The description on how to add an MCP server to Cursor can be found in the Cursor documentation. If you are running Cursor/Windsurf locally, you can use the following URL:
http://localhost:8000/sse
[!TIP] We suggest SSE transport as a preferred way to connect Cursor/Windsurf to the MCP server, as it can support remote connections. That makes it easy to share the server with your team or use it in a cloud environment.
This configuration transforms the Qdrant MCP server into a specialized code search tool that can:
You can populate the database by storing natural language descriptions of code snippets (in the information parameter)
along with the actual code (in the metadata.code property), and then search for them using natural language queries
that describe what you're looking for.
[!NOTE] The tool descriptions provided above are examples and may need to be customized for your specific use case. Consider adjusting the descriptions to better match your team's workflow and the specific types of code snippets you want to store and retrieve.
If you have successfully installed the mcp-server-qdrant, but still can't get it to work with Cursor, please
consider creating the Cursor rules so the MCP tools are always used when
the agent produces a new code snippet. You can restrict the rules to only work for certain file types, to avoid using
the MCP server for the documentation or other types of content.
You can enhance Claude Code's capabilities by connecting it to this MCP server, enabling semantic search over your existing codebase.
Add the MCP server to Claude Code:
# Add mcp-server-qdrant configured for code search
claude mcp add code-search \
-e QDRANT_URL="http://localhost:6333" \
-e COLLECTION_NAME="code-repository" \
-e EMBEDDING_MODEL="sentence-transformers/all-MiniLM-L6-v2" \
-e TOOL_STORE_DESCRIPTION="Store code snippets with descriptions. The 'information' parameter should contain a natural language description of what the code does, while the actual code should be included in the 'metadata' parameter as a 'code' property." \
-e TOOL_FIND_DESCRIPTION="Search for relevant code snippets using natural language. The 'query' parameter should describe the functionality you're looking for." \
-- uvx mcp-server-qdrant
Verify the server was added:
claude mcp list
Tool descriptions, specified in TOOL_STORE_DESCRIPTION and TOOL_FIND_DESCRIPTION, guide Claude Code on how to use
the MCP server. The ones provided above are examples and may need to be customized for your specific use case. However,
Claude Code should be already able to:
qdrant-store tool to store code snippets with descriptions.qdrant-find tool to search for relevant code snippets using natural language.The MCP server can be run in development mode using the mcp dev command. This will start the server and open the MCP
inspector in your browser.
COLLECTION_NAME=mcp-dev fastmcp dev src/mcp_server_qdrant/server.py
For one-click installation, click one of the install buttons below:
Add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P and typing Preferences: Open User Settings (JSON).
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "qdrantUrl",
"description": "Qdrant URL"
},
{
"type": "promptString",
"id": "qdrantApiKey",
"description": "Qdrant API Key",
"password": true
},
{
"type": "promptString",
"id": "collectionName",
"description": "Collection Name"
}
],
"servers": {
"qdrant": {
"command": "uvx",
"args": ["mcp-server-qdrant"],
"env": {
"QDRANT_URL": "${input:qdrantUrl}",
"QDRANT_API_KEY": "${input:qdrantApiKey}",
"COLLECTION_NAME": "${input:collectionName}"
}
}
}
}
}
Or if you prefer using Docker, add this configuration instead:
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "qdrantUrl",
"description": "Qdrant URL"
},
{
"type": "promptString",
"id": "qdrantApiKey",
"description": "Qdrant API Key",
"password": true
},
{
"type": "promptString",
"id": "collectionName",
"description": "Collection Name"
}
],
"servers": {
"qdrant": {
"command": "docker",
"args": [
"run",
"-p", "8000:8000",
"-i",
"--rm",
"-e", "QDRANT_URL",
"-e", "QDRANT_API_KEY",
"-e", "COLLECTION_NAME",
"mcp-server-qdrant"
],
"env": {
"QDRANT_URL": "${input:qdrantUrl}",
"QDRANT_API_KEY": "${input:qdrantApiKey}",
"COLLECTION_NAME": "${input:collectionName}"
}
}
}
}
}
Alternatively, you can create a .vscode/mcp.json file in your workspace with the following content:
{
"inputs": [
{
"type": "promptString",
"id": "qdrantUrl",
"description": "Qdrant URL"
},
{
"type": "promptString",
"id": "qdrantApiKey",
"description": "Qdrant API Key",
"password": true
},
{
"type": "promptString",
"id": "collectionName",
"description": "Collection Name"
}
],
"servers": {
"qdrant": {
"command": "uvx",
"args": ["mcp-server-qdrant"],
"env": {
"QDRANT_URL": "${input:qdrantUrl}",
"QDRANT_API_KEY": "${input:qdrantApiKey}",
"COLLECTION_NAME": "${input:collectionName}"
}
}
}
}
For workspace configuration with Docker, use this in .vscode/mcp.json:
{
"inputs": [
{
"type": "promptString",
"id": "qdrantUrl",
"description": "Qdrant URL"
},
{
"type": "promptString",
"id": "qdrantApiKey",
"description": "Qdrant API Key",
"password": true
},
{
"type": "promptString",
"id": "collectionName",
"description": "Collection Name"
}
],
"servers": {
"qdrant": {
"command": "docker",
"args": [
"run",
"-p", "8000:8000",
"-i",
"--rm",
"-e", "QDRANT_URL",
"-e", "QDRANT_API_KEY",
"-e", "COLLECTION_NAME",
"mcp-server-qdrant"
],
"env": {
"QDRANT_URL": "${input:qdrantUrl}",
"QDRANT_API_KEY": "${input:qdrantApiKey}",
"COLLECTION_NAME": "${input:collectionName}"
}
}
}
}
If you have suggestions for how mcp-server-qdrant could be improved, or want to report a bug, open an issue! We'd love all and any contributions.
mcp-server-qdrant locallyThe MCP inspector is a developer tool for testing and debugging MCP servers. It runs both a client UI (default port 5173) and an MCP proxy server (default port 3000). Open the client UI in your browser to use the inspector.
QDRANT_URL=":memory:" COLLECTION_NAME="test" \
fastmcp dev src/mcp_server_qdrant/server.py
Once started, open your browser to http://localhost:5173 to access the inspector interface.
This MCP server is licensed under the Apache License 2.0. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the Apache License 2.0. For more details, please see the LICENSE file in the project repository.
Please log in to share your review and rating for this MCP.
Explore related MCPs that share similar capabilities and solve comparable challenges
by modelcontextprotocol
A basic implementation of persistent memory using a local knowledge graph. This lets Claude remember information about the user across chats.
by topoteretes
Provides dynamic memory for AI agents through modular ECL (Extract, Cognify, Load) pipelines, enabling seamless integration with graph and vector stores using minimal code.
by basicmachines-co
Enables persistent, local‑first knowledge management by allowing LLMs to read and write Markdown files during natural conversations, building a traversable knowledge graph that stays under the user’s control.
by smithery-ai
Provides read and search capabilities for Markdown notes in an Obsidian vault for Claude Desktop and other MCP clients.
by chatmcp
Summarize chat messages by querying a local chat database and returning concise overviews.
by dmayboroda
Provides on‑premises conversational retrieval‑augmented generation (RAG) with configurable Docker containers, supporting fully local execution, ChatGPT‑based custom GPTs, and Anthropic Claude integration.
by doobidoo
Provides a universal memory service with semantic search, intelligent memory triggers, OAuth‑enabled team collaboration, and multi‑client support for Claude Desktop, Claude Code, VS Code, Cursor and over a dozen AI applications.
by GreatScottyMac
Provides a project‑specific memory bank that stores decisions, progress, architecture, and custom data, exposing a structured knowledge graph via MCP for AI assistants and IDE tools.
by andrea9293
Provides document management and AI-powered semantic search for storing, retrieving, and querying text, markdown, and PDF files locally without external databases.