by mastergo-design
Enables AI models to retrieve DSL data from MasterGo design files via a standalone service that runs with npx and only requires a Node.js environment.
Mastergo Magic MCP provides a bridge between MasterGo design tools and AI models, allowing direct access to design DSL data, component metadata, and workflow information.
npx @mastergo/magic-mcp --token=YOUR_TOKEN [--url=API_URL] [--rule=RULE_NAME] [--debug] [--no-rule]
MG_MCP_TOKEN
, API_BASE_URL
, RULES
).MG_MCP_TOKEN
or MASTERGO_API_TOKEN
).--url
flag or API_BASE_URL
environment variable.--no-rule
flag.yarn && yarn build
and point the MCP configuration to the generated bin/cli.js
script.MasterGo Magic MCP is a standalone MCP (Model Context Protocol) service designed to connect MasterGo design tools with AI models. It enables AI models to directly retrieve DSL data from MasterGo design files.
npx @mastergo/magic-mcp --token=YOUR_TOKEN [--url=API_URL] [--rule=RULE_NAME] [--debug] [--no-rule]
--token=YOUR_TOKEN
(required): MasterGo API token for authentication--url=API_URL
(optional): API base URL, defaults to http://localhost:3000--rule=RULE_NAME
(optional): Add design rules to apply, can be used multiple times--debug
(optional): Enable debug mode for detailed error information--no-rule
(optional): Disable default rulesYou can also use space-separated format for parameters:
npx @mastergo/magic-mcp --token YOUR_TOKEN --url API_URL --rule RULE_NAME --debug
Alternatively, you can use environment variables instead of command line arguments:
MG_MCP_TOKEN
or MASTERGO_API_TOKEN
: MasterGo API tokenAPI_BASE_URL
: API base URLRULES
: JSON array of rules (e.g., '["rule1", "rule2"]'
)To install MasterGo Magic for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @mastergo-design/mastergo-magic-mcp --client claude
Search for LINGMA in the VSCode extension marketplace and install it.
After logging in, click on [MCP tools] in the chat box.
Click on [MCP Square] at the top to enter the MCP marketplace, find the MasterGo design collaboration tool and install it.
After installation, go back to [MCP Servers], and edit our MCP service to replace it with your own MasterGo token.
Finally, switch the chat mode to agent mode in the chat interface.
Cursor Mcp usage guide reference: https://docs.cursor.com/context/model-context-protocol#using-mcp-tools-in-agent
You can configure the MCP server using either command line arguments or environment variables:
Option 1: Using command line arguments
{
"mcpServers": {
"mastergo-magic-mcp": {
"command": "npx",
"args": [
"-y",
"@mastergo/magic-mcp",
"--token=<MG_MCP_TOKEN>",
"--url=https://mastergo.com"
],
"env": {}
}
}
}
Option 2: Using environment variables
{
"mcpServers": {
"mastergo-magic-mcp": {
"command": "npx",
"args": ["-y", "@mastergo/magic-mcp"],
"env": {
"MG_MCP_TOKEN": "<YOUR_TOKEN>",
"API_BASE_URL": "https://mastergo.com"
}
}
}
}
Option 1: Using command line arguments
{
"mcpServers": {
"@master/mastergo-magic-mcp": {
"command": "npx",
"args": [
"-y",
"@mastergo/magic-mcp",
"--token=<MG_MCP_TOKEN>",
"--url=https://mastergo.com"
],
"env": {}
}
}
}
Option 2: Using environment variables
{
"mcpServers": {
"@master/mastergo-magic-mcp": {
"command": "npx",
"args": ["-y", "@mastergo/magic-mcp"],
"env": {
"MG_MCP_TOKEN": "<YOUR_TOKEN>",
"API_BASE_URL": "https://mastergo.com"
}
}
}
}
The src
directory contains the core implementation of the MasterGo Magic MCP service:
index.ts
: Entry point of the application that initializes the MCP server and registers all toolshttp-util.ts
: Utility for handling HTTP requests to the MasterGo APItypes.d.ts
: TypeScript type definitions for the projectContains implementations of MCP tools:
base-tool.ts
: Base class for all MCP toolsget-dsl.ts
: Tool for retrieving DSL (Domain Specific Language) data from MasterGo design filesget-component-link.ts
: Tool for retrieving component documentation from linksget-meta.ts
: Tool for retrieving metadata informationget-component-workflow.ts
: Tool providing structured component development workflow for Vue and React components, generating workflow files and component specificationsContains markdown files with additional documentation:
meta.md
: Documentation about metadata structure and usagecomponent-workflow.md
: Component development workflow documentation guiding structured component development processyarn
and yarn build
to install dependencies and build the codebin/cli.js
"mastergo-mcp-local": {
"command": "node",
"args": [
"absolute/path/to/bin/cli.js",
"--token=mg_xxxxxx",
"--url=https://mastergo.com",
"--debug"
],
"env": {}
},
After successful execution, you can debug based on the local running results. You can build your own MCP service based on your modifications.
We welcome your code contributions and look forward to building MasterGo's MCP service together.
ISC
Please log in to share your review and rating for this MCP.
{ "mcpServers": { "mastergo-magic-mcp": { "command": "npx", "args": [ "-y", "@mastergo/magic-mcp", "--token=<MG_MCP_TOKEN>", "--url=https://mastergo.com" ], "env": { "MG_MCP_TOKEN": "<YOUR_TOKEN>", "API_BASE_URL": "https://mastergo.com" } } } }
Explore related MCPs that share similar capabilities and solve comparable challenges
by zed-industries
A high‑performance, multiplayer code editor designed for speed and collaboration.
by modelcontextprotocol
Model Context Protocol Servers
by modelcontextprotocol
A Model Context Protocol server for Git repository interaction and automation.
by modelcontextprotocol
A Model Context Protocol server that provides time and timezone conversion capabilities.
by cline
An autonomous coding assistant that can create and edit files, execute terminal commands, and interact with a browser directly from your IDE, operating step‑by‑step with explicit user permission.
by continuedev
Enables faster shipping of code by integrating continuous AI agents across IDEs, terminals, and CI pipelines, offering chat, edit, autocomplete, and customizable agent workflows.
by upstash
Provides up-to-date, version‑specific library documentation and code examples directly inside LLM prompts, eliminating outdated information and hallucinated APIs.
by github
Connects AI tools directly to GitHub, enabling natural‑language interactions for repository browsing, issue and pull‑request management, CI/CD monitoring, code‑security analysis, and team collaboration.
by daytonaio
Provides a secure, elastic infrastructure that creates isolated sandboxes for running AI‑generated code with sub‑90 ms startup, unlimited persistence, and OCI/Docker compatibility.