by Klavis-AI
Provides production‑ready MCP servers and a hosted service for integrating AI applications with over 50 third‑party services via standardized APIs, OAuth, and easy Docker or hosted deployment.
Klavis AI delivers a catalog of Model Context Protocol (MCP) servers that expose the functionality of popular SaaS platforms (GitHub, Gmail, Google Sheets, Slack, Notion, Salesforce, Postgres, etc.) as AI‑friendly endpoints. Both a managed hosted service and self‑hostable Docker images are available, allowing developers to plug external data and actions directly into LLM‑driven agents.
klavis
client (pip install klavis
or npm install klavis
), and call klavis.mcp_server.create_server_instance("GMAIL", "user123")
to obtain a ready‑to‑use server URL.docker run -p 5000:5000 ghcr.io/klavis-ai/github-mcp-server:latest
, or build from source under klavis/mcp_servers/<service>
.Q: Do I need to manage OAuth credentials myself?
A: Not when using the hosted service – the platform handles the OAuth flow. For self‑hosted servers, set the required env vars (e.g., KLAVIS_API_KEY
) and follow each server’s README.
Q: Is there a free tier? A: Yes, a free API key provides limited monthly usage for the hosted MCP service; additional usage is pay‑as‑you‑go.
Q: Can I add my own MCP server? A: Absolutely. Fork the repository, implement the MCP spec for your service, and publish a Docker image or contribute back.
Q: What languages are supported? A: The client SDK is available for Python and TypeScript/JavaScript. Server implementations exist in Go, Python, and Node.js.
Q: How do I retrieve tool definitions for OpenAI?
A: Call klavis.mcp_server.list_tools(server_url, format="OPENAI")
to get a JSON schema compatible with OpenAI’s function‑calling feature.
Get instant access to 50+ MCP servers with our managed infrastructure - no setup required:
pip install klavis
# or
npm install klavis
from klavis import Klavis
klavis = Klavis(api_key="your-free-key")
server = klavis.mcp_server.create_server_instance("GMAIL", "user123")
# Run GitHub MCP Server
docker run -p 5000:5000 ghcr.io/klavis-ai/github-mcp-server:latest
# Run Gmail MCP Server with OAuth
docker run -it -e KLAVIS_API_KEY=your_key \
ghcr.io/klavis-ai/gmail-mcp-server-oauth:latest
# Run YouTube MCP Server
docker run -p 5000:5000 ghcr.io/klavis-ai/youtube-mcp-server:latest
For Cursor, use our hosted service URLs directly - no Docker setup needed:
{
"mcpServers": {
"klavis-gmail": {
"url": "https://gmail-mcp-server.klavis.ai/mcp/?instance_id=your-instance"
},
"klavis-github": {
"url": "https://github-mcp-server.klavis.ai/mcp/?instance_id=your-instance"
}
}
}
💡 Get your personalized configuration instantly:
Perfect for trying out MCP servers or integrating with AI tools like Claude Desktop.
Available Images:
ghcr.io/klavis-ai/{server-name}-mcp-server:latest
- Basic serverghcr.io/klavis-ai/{server-name}-mcp-server-oauth:latest
- With OAuth support# Example: GitHub MCP Server
docker run -p 5000:5000 ghcr.io/klavis-ai/github-mcp-server:latest
# Example: Gmail with OAuth (requires API key)
docker run -it -e KLAVIS_API_KEY=your_key \
ghcr.io/klavis-ai/gmail-mcp-server-oauth:latest
Clone and run any MCP server locally (with or without Docker):
git clone https://github.com/klavis-ai/klavis.git
cd klavis/mcp_servers/github
# Option A: Using Docker
docker build -t github-mcp .
docker run -p 5000:5000 github-mcp
# Option B: Run directly (Go example)
go mod download
go run server.go
# Option C: Python servers
cd ../youtube
pip install -r requirements.txt
python server.py
# Option D: Node.js servers
cd ../slack
npm install
npm start
Each server includes detailed setup instructions in its individual README.
Use our managed infrastructure - no Docker required:
pip install klavis # or npm install klavis
Service | Docker Image | OAuth Required | Description |
---|---|---|---|
GitHub | ghcr.io/klavis-ai/github-mcp-server |
✅ | Repository management, issues, PRs |
Gmail | ghcr.io/klavis-ai/gmail-mcp-server-oauth |
✅ | Email reading, sending, management |
Google Sheets | ghcr.io/klavis-ai/google_sheets-mcp-server-oauth |
✅ | Spreadsheet operations |
YouTube | ghcr.io/klavis-ai/youtube-mcp-server |
❌ | Video information, search |
Slack | ghcr.io/klavis-ai/slack-mcp-server-oauth |
✅ | Channel management, messaging |
Notion | ghcr.io/klavis-ai/notion-mcp-server-oauth |
✅ | Database and page operations |
Salesforce | ghcr.io/klavis-ai/salesforce-mcp-server-oauth |
✅ | CRM data management |
Postgres | ghcr.io/klavis-ai/postgres-mcp-server |
❌ | Database operations |
... | ... | ... | ... |
And more! 🔍 View All 50+ Servers → | 🐳 Browse Docker Images →
For existing MCP implementations:
Python
from klavis import Klavis
klavis = Klavis(api_key="your-key")
server = klavis.mcp_server.create_server_instance(
server_name="YOUTUBE",
user_id="user123",
platform_name="MyApp"
)
TypeScript
import { KlavisClient } from 'klavis';
const klavis = new KlavisClient({ apiKey: 'your-key' });
const server = await klavis.mcpServer.createServerInstance({
serverName: "Gmail",
userId: "user123"
});
OpenAI Function Calling
from openai import OpenAI
from klavis import Klavis
klavis = Klavis(api_key="your-key")
openai = OpenAI(api_key="your-openai-key")
# Create server and get tools
server = klavis.mcp_server.create_server_instance("YOUTUBE", "user123")
tools = klavis.mcp_server.list_tools(server.server_url, format="OPENAI")
# Use with OpenAI
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "Summarize this video: https://..."}],
tools=tools.tools
)
Perfect for individuals and businesses who want instant access without infrastructure complexity:
from klavis import Klavis
# Get started with just an API key
klavis = Klavis(api_key="your-free-key")
# Create any MCP server instantly
gmail_server = klavis.mcp_server.create_server_instance(
server_name="GMAIL",
user_id="your-user-id",
platform_name="MyApp"
)
# Server is ready to use immediately
print(f"Gmail MCP server ready: {gmail_server.server_url}")
🔗 Get Free API Key → | 📖 Complete Documentation →
Some servers require OAuth authentication (Google, GitHub, Slack, etc.). OAuth implementation requires significant setup and code complexity:
# Run with OAuth support (requires free API key)
docker run -it -e KLAVIS_API_KEY=your_free_key \
ghcr.io/klavis-ai/gmail-mcp-server-oauth:latest
# Follow the displayed URL to authenticate
# Server starts automatically after authentication
Why OAuth needs additional implementation?
Our OAuth wrapper simplifies this by handling all the complex OAuth implementation details, so you can focus on using the MCP servers directly.
Alternative: For advanced users, you can implement OAuth yourself by creating apps with each service provider. Check individual server READMEs for technical details.
Resource | Link | Description |
---|---|---|
📖 Documentation | docs.klavis.ai | Complete guides and API reference |
💬 Discord | Join Community | Get help and connect with users |
🐛 Issues | GitHub Issues | Report bugs and request features |
📦 Examples | examples/ | Working examples with popular AI frameworks |
🔧 Server Guides | mcp_servers/ | Individual server documentation |
We love contributions! Whether you want to:
Check out our Contributing Guide to get started!
MIT License - see LICENSE for details.
Please log in to share your review and rating for this MCP.
Explore related MCPs that share similar capabilities and solve comparable challenges
by modelcontextprotocol
An MCP server implementation that provides a tool for dynamic and reflective problem-solving through a structured thinking process.
by danny-avila
Provides a self‑hosted ChatGPT‑style interface supporting numerous AI models, agents, code interpreter, image generation, multimodal interactions, and secure multi‑user authentication.
by block
Automates engineering tasks on local machines, executing code, building projects, debugging, orchestrating workflows, and interacting with external APIs using any LLM.
by RooCodeInc
Provides an autonomous AI coding partner inside the editor that can understand natural language, manipulate files, run commands, browse the web, and be customized via modes and instructions.
by pydantic
A Python framework that enables seamless integration of Pydantic validation with large language models, providing type‑safe agent construction, dependency injection, and structured output handling.
by lastmile-ai
Build effective agents using Model Context Protocol and simple, composable workflow patterns.
by mcp-use
A Python SDK that simplifies interaction with MCP servers and enables developers to create custom agents with tool‑calling capabilities.
by nanbingxyz
A cross‑platform desktop AI assistant that connects to major LLM providers, supports a local knowledge base, and enables tool integration via MCP servers.
by gptme
Provides a personal AI assistant that runs directly in the terminal, capable of executing code, manipulating files, browsing the web, using vision, and interfacing with various LLM providers.