by cr7258
Provides Elasticsearch and OpenSearch interaction via Model Context Protocol, enabling document search, index management, cluster monitoring, and alias operations.
The server implements a set of tools that expose Elasticsearch and OpenSearch functionality through a standardized protocol, allowing clients to perform general API calls, manage indices, manipulate documents, monitor cluster health, and handle aliases.
.env.example to .env and set host URLs, usernames, and passwords for Elasticsearch or OpenSearch.# Elasticsearch
docker-compose -f docker-compose-elasticsearch.yml up -d
# OpenSearch
docker-compose -f docker-compose-opensearch.yml up -d
uvx elasticsearch-mcp-server --transport streamable-http # or --transport sse
uv run src/server.py elasticsearch-mcp-server --transport streamable-http
--host, --port, and --path flags.claude_desktop_config.json (see README for example JSON blocks).general_api_request.delete_by_query.Q: Do I need to run the server locally? A: No. The server can be launched on any host reachable by your client. Only the Elasticsearch/OpenSearch endpoints must be reachable.
Q: Which transport should I choose? A: Use SSE for push‑style streaming of responses, or Streamable HTTP for conventional request/response semantics. Both are interchangeable from the client side.
Q: How do I work with Elasticsearch 7.x?
A: Use the elasticsearch-mcp-server-es7 binary/command. It bundles the 7.x client library.
Q: Can I secure the MCP server? A: The server itself does not provide authentication; secure it behind a reverse proxy (e.g., Nginx) or run it in a trusted network. Authentication is handled by the underlying Elasticsearch/OpenSearch cluster.
Q: What Python version is required? A: The project follows the standard uv/uvx tooling, which supports Python 3.9+.
A Model Context Protocol (MCP) server implementation that provides Elasticsearch and OpenSearch interaction. This server enables searching documents, analyzing indices, and managing cluster through a set of tools.
https://github.com/user-attachments/assets/f7409e31-fac4-4321-9c94-b0ff2ea7ff15
general_api_request: Perform a general HTTP API request. Use this tool for any Elasticsearch/OpenSearch API that does not have a dedicated tool.list_indices: List all indices.get_index: Returns information (mappings, settings, aliases) about one or more indices.create_index: Create a new index.delete_index: Delete an index.search_documents: Search for documents.index_document: Creates or updates a document in the index.get_document: Get a document by ID.delete_document: Delete a document by ID.delete_by_query: Deletes documents matching the provided query.get_cluster_health: Returns basic information about the health of the cluster.get_cluster_stats: Returns high-level overview of cluster statistics.list_aliases: List all aliases.get_alias: Get alias information for a specific index.put_alias: Create or update an alias for a specific index.delete_alias: Delete an alias for a specific index.Copy the .env.example file to .env and update the values accordingly.
Start the Elasticsearch/OpenSearch cluster using Docker Compose:
# For Elasticsearch
docker-compose -f docker-compose-elasticsearch.yml up -d
# For OpenSearch
docker-compose -f docker-compose-opensearch.yml up -d
The default Elasticsearch username is elastic and password is test123. The default OpenSearch username is admin and password is admin.
You can access Kibana/OpenSearch Dashboards from http://localhost:5601.
Using uvx will automatically install the package from PyPI, no need to clone the repository locally. Add the following configuration to 's config file claude_desktop_config.json.
// For Elasticsearch
{
"mcpServers": {
"elasticsearch-mcp-server": {
"command": "uvx",
"args": [
"elasticsearch-mcp-server"
],
"env": {
"ELASTICSEARCH_HOSTS": "https://localhost:9200",
"ELASTICSEARCH_USERNAME": "elastic",
"ELASTICSEARCH_PASSWORD": "test123"
}
}
}
}
// For OpenSearch
{
"mcpServers": {
"opensearch-mcp-server": {
"command": "uvx",
"args": [
"opensearch-mcp-server"
],
"env": {
"OPENSEARCH_HOSTS": "https://localhost:9200",
"OPENSEARCH_USERNAME": "admin",
"OPENSEARCH_PASSWORD": "admin"
}
}
}
}
Using uv requires cloning the repository locally and specifying the path to the source code. Add the following configuration to Claude Desktop's config file claude_desktop_config.json.
// For Elasticsearch
{
"mcpServers": {
"elasticsearch-mcp-server": {
"command": "uv",
"args": [
"--directory",
"path/to/src/elasticsearch_mcp_server",
"run",
"elasticsearch-mcp-server"
],
"env": {
"ELASTICSEARCH_HOSTS": "https://localhost:9200",
"ELASTICSEARCH_USERNAME": "elastic",
"ELASTICSEARCH_PASSWORD": "test123"
}
}
}
}
// For OpenSearch
{
"mcpServers": {
"opensearch-mcp-server": {
"command": "uv",
"args": [
"--directory",
"path/to/src/elasticsearch_mcp_server",
"run",
"opensearch-mcp-server"
],
"env": {
"OPENSEARCH_HOSTS": "https://localhost:9200",
"OPENSEARCH_USERNAME": "admin",
"OPENSEARCH_PASSWORD": "admin"
}
}
}
}
# export environment variables
export ELASTICSEARCH_HOSTS="https://localhost:9200"
export ELASTICSEARCH_USERNAME="elastic"
export ELASTICSEARCH_PASSWORD="test123"
# By default, the SSE MCP server will serve on http://127.0.0.1:8000/sse
uvx elasticsearch-mcp-server --transport sse
# The host, port, and path can be specified using the --host, --port, and --path options
uvx elasticsearch-mcp-server --transport sse --host 0.0.0.0 --port 8000 --path /sse
# By default, the SSE MCP server will serve on http://127.0.0.1:8000/sse
uv run src/server.py elasticsearch-mcp-server --transport sse
# The host, port, and path can be specified using the --host, --port, and --path options
uv run src/server.py elasticsearch-mcp-server --transport sse --host 0.0.0.0 --port 8000 --path /sse
# export environment variables
export ELASTICSEARCH_HOSTS="https://localhost:9200"
export ELASTICSEARCH_USERNAME="elastic"
export ELASTICSEARCH_PASSWORD="test123"
# By default, the Streamable HTTP MCP server will serve on http://127.0.0.1:8000/mcp
uvx elasticsearch-mcp-server --transport streamable-http
# The host, port, and path can be specified using the --host, --port, and --path options
uvx elasticsearch-mcp-server --transport streamable-http --host 0.0.0.0 --port 8000 --path /mcp
# By default, the Streamable HTTP MCP server will serve on http://127.0.0.1:8000/mcp
uv run src/server.py elasticsearch-mcp-server --transport streamable-http
# The host, port, and path can be specified using the --host, --port, and --path options
uv run src/server.py elasticsearch-mcp-server --transport streamable-http --host 0.0.0.0 --port 8000 --path /mcp
The MCP server is compatible with Elasticsearch 7.x, 8.x, and 9.x. By default, it uses the Elasticsearch 8.x client (without a suffix). To use the Elasticsearch 7.x client, run the elasticsearch-mcp-server-es7 variant. For Elasticsearch 9.x, use elasticsearch-mcp-server-es9. For example:
uvx elasticsearch-mcp-server-es7
| MCP Server | Elasticsearch |
|---|---|
| elasticsearch-mcp-server-es7 | Elasticsearch 7.x |
| elasticsearch-mcp-server | Elasticsearch 8.x |
| elasticsearch-mcp-server-es9 | Elasticsearch 9.x |
| opensearch-mcp-server | OpenSearch 1.x, 2.x, 3.x |
This project is licensed under the Apache License Version 2.0 - see the LICENSE file for details.
Please log in to share your review and rating for this MCP.
Explore related MCPs that share similar capabilities and solve comparable challenges
by exa-labs
Provides real-time web search capabilities to AI assistants via a Model Context Protocol server, enabling safe and controlled access to the Exa AI Search API.
by perplexityai
Enables Claude and other MCP‑compatible applications to perform real‑time web searches through the Perplexity (Sonar) API without leaving the MCP ecosystem.
by MicrosoftDocs
Provides semantic search and fetch capabilities for Microsoft official documentation, returning content in markdown format via a lightweight streamable HTTP transport for AI agents and development tools.
by elastic
Enables natural‑language interaction with Elasticsearch indices via the Model Context Protocol, exposing tools for listing indices, fetching mappings, performing searches, running ES|QL queries, and retrieving shard information.
by graphlit
Enables integration between MCP clients and the Graphlit platform, providing ingestion, extraction, retrieval, and RAG capabilities across a wide range of data sources and connectors.
by mamertofabian
Fast cross‑platform file searching leveraging the Everything SDK on Windows, Spotlight on macOS, and locate/plocate on Linux.
by kagisearch
Provides web search and video summarization capabilities through the Model Context Protocol, enabling AI assistants like Claude to perform queries and summarizations.
by liuyoshio
Provides natural‑language search and recommendation for Model Context Protocol servers, delivering rich metadata and real‑time updates.
by ihor-sokoliuk
Provides web search capabilities via the SearXNG API, exposing them through an MCP server for seamless integration with AI agents and tools.