by Cronlytic
Enables LLM agents to manage serverless cron jobs through the Cronlytic API, offering health checks, full CRUD operations, job control, log access, and ready‑to‑use prompts.
Provides an MCP server that connects LLM applications with the Cronlytic service, allowing automated creation, retrieval, updating, deletion, pausing, resuming, and monitoring of serverless cron jobs.
setup_dev_env.sh script, which creates a virtual environment and installs dependencies.CRONLYTIC_API_KEY, CRONLYTIC_USER_ID), a JSON config file, or command‑line arguments.python -m cronlytic_mcp_server.server (add --debug for verbose logs or --config /path/to/config.json to use a custom file).mcpServers block in the client’s configuration.Q: What Python version is required? A: Python 3.8 or newer.
Q: How are credentials passed securely? A: Use environment variables, a protected JSON config file, or command‑line flags; never commit keys to source control.
Q: Can I run the server in a container?
A: Yes. Build a Docker image that copies the source, installs dependencies, and runs python -m cronlytic_mcp_server.server as the entrypoint.
Q: What happens if the Cronlytic API rate‑limits requests?
A: The client includes exponential backoff and automatic retries up to the configured max_retries.
Q: Is there support for custom prompts?
A: Additional prompts can be added under src/prompts/ and referenced by your LLM integration.
🎉 PROJECT COMPLETED - PRODUCTION READY 🎉
A comprehensive Model Context Protocol (MCP) server that integrates with the Cronlytic API to provide seamless cron job management through LLM applications like Claude Desktop.
Final Status: ✅ All 6 phases complete | 88/88 tests passing | Production documentation ready
The Cronlytic MCP Server enables AI agents and LLM applications to:
🎯 Final Achievement Summary:
📊 Key Metrics:
# Clone the repository
git clone https://github.com/Cronlytic/cronlytic-mcp-server.git
cd cronlytic-mcp-server
# Run the setup script (creates venv and installs everything)
./setup_dev_env.sh
# Activate the virtual environment
source venv/bin/activate
# Clone the repository
git clone https://github.com/Cronlytic/cronlytic-mcp-server.git
cd cronlytic-mcp-server
# Create virtual environment
python3 -m venv venv
source venv/bin/activate
# Upgrade pip
pip install --upgrade pip
# Install dependencies
pip install -r requirements.txt
# Install development dependencies (optional)
pip install -r requirements-dev.txt
# Install in development mode
pip install -e .
The server needs your Cronlytic API credentials to function. You can provide these in several ways:
export CRONLYTIC_API_KEY="your_api_key_here"
export CRONLYTIC_USER_ID="your_user_id_here"
Create a configuration file at one of these locations:
./cronlytic_config.json (current directory)~/.cronlytic/config.json (user home directory)/etc/cronlytic/config.json (system-wide){
"api_key": "your_cronlytic_api_key_here",
"user_id": "your_cronlytic_user_id_here",
"base_url": "https://api.cronlytic.com/prog",
"timeout": 30,
"max_retries": 3,
"retry_delay": 1.0
}
python -m cronlytic_mcp_server.server --api-key "your_key" --user-id "your_id"
# Basic usage (reads from environment variables or config file)
python -m cronlytic_mcp_server.server
# With command line arguments
python -m cronlytic_mcp_server.server --api-key "your_key" --user-id "your_id"
# With debug logging
python -m cronlytic_mcp_server.server --debug
# With custom config file
python -m cronlytic_mcp_server.server --config /path/to/config.json
Test connectivity and authentication with the Cronlytic API:
# The health_check tool requires no parameters
# It will test:
# - API connectivity
# - Authentication validity
# - Response times
# - Basic functionality
Example Output:
# Cronlytic API Health Check
**Status:** ✅ Cronlytic API connection is healthy and working correctly
**Timestamp:** 2025-01-27T10:30:00Z
**Response Time:** 150 ms
## Connection Details
- **Base URL:** https://api.cronlytic.com/prog
- **Connectivity:** ✅
- **Authentication:** ✅
## Job Information
- **Job Count:** 3
- **Can List Jobs:** ✅
## Performance
- **Performance Rating:** Good
## Recommendations
- 💡 Found 3 job(s). All systems appear to be working correctly.
To use with Claude Desktop, add this to your claude_desktop_config.json:
{
"mcpServers": {
"cronlytic": {
"command": "python",
"args": ["-m", "cronlytic_mcp_server.server"],
"env": {
"CRONLYTIC_API_KEY": "your_api_key_here",
"CRONLYTIC_USER_ID": "your_user_id_here"
}
}
}
}
To run virtual environment of python
{
"mcpServers": {
"cronlytic": {
"command": "python",
"args": ["-m", "src.server"],
"cwd": "PATH/cronlytic-mcp-server",
"env": {
"VIRTUAL_ENV": "PATH/cronlytic-mcp-server/.venv",
"PATH": "PATH/cronlytic-mcp-server/.venv/bin:${PATH}",
"CRONLYTIC_API_KEY": "your_api_key_here",
"CRONLYTIC_USER_ID": "your_user_id_here"
}
}
}
}
cronlytic-mcp-server/
├── src/
│ ├── __init__.py # Package initialization
│ ├── server.py # Main MCP server implementation
│ ├── cronlytic_client.py # Cronlytic API client wrapper
│ ├── tools/ # Tool implementations
│ │ ├── __init__.py
│ │ └── health_check.py # Health check tool
│ ├── resources/ # Resource implementations (Phase 4)
│ ├── prompts/ # Prompt implementations (Phase 5)
│ └── utils/ # Utility modules
│ ├── __init__.py
│ ├── auth.py # Authentication handling
│ ├── errors.py # Custom error classes
│ └── validation.py # Input validation
├── tests/ # Test files (Phase 6)
├── config/
│ └── example_config.json # Example configuration
├── requirements.txt
├── pyproject.toml
└── README.md
# Activate virtual environment (if not already active)
source venv/bin/activate
# Install in development mode (if not already done)
pip install -e .
# Set environment variables for testing
export CRONLYTIC_API_KEY="your_test_key"
export CRONLYTIC_USER_ID="your_test_user_id"
# Run with debug logging
python -m cronlytic_mcp_server.server --debug
# Run validation tests
python validate_phase1.py
# Format code (if you have development dependencies)
black src/
ruff check src/
# Type checking
mypy src/
# Install MCP Inspector
npm install -g @modelcontextprotocol/inspector
# Test the server
mcp-inspector python -m cronlytic_mcp_server.server
The server provides comprehensive error handling:
Structured logging is provided at multiple levels:
# Normal operation
2025-01-27 10:30:00 - cronlytic_mcp_server.server - INFO - Cronlytic MCP Server initialized
# Debug mode
python -m cronlytic_mcp_server.server --debug
create_job - Create new cron jobslist_jobs - List all user jobsget_job - Get specific job detailsupdate_job - Update existing jobsdelete_job - Delete jobs permanentlypause_job - Pause job executionresume_job - Resume paused jobsget_job_logs - Retrieve execution logsThis project follows a structured development approach with clearly defined phases. Each phase builds upon the previous one to ensure stability and maintainability.
MIT License - see LICENSE file for details.
docs/ directory for detailed specificationsdocs/cronlytic-API-specification.mdCurrent Version: 0.1.0 Last Updated: Jun 2025
Please log in to share your review and rating for this MCP.
Explore related MCPs that share similar capabilities and solve comparable challenges
by activepieces
A self‑hosted, open‑source platform that provides a no‑code builder for creating, versioning, and running AI‑driven automation workflows. Pieces are TypeScript‑based plugins that become MCP servers, allowing direct consumption by large language models.
by Skyvern-AI
Automates browser‑based workflows by leveraging large language models and computer‑vision techniques, turning natural‑language prompts into fully functional web interactions without writing custom scripts.
by ahujasid
Enables Claude AI to control Blender for prompt‑assisted 3D modeling, scene creation, and manipulation via a socket‑based Model Context Protocol server.
by PipedreamHQ
Connect APIs quickly with a free, hosted integration platform that enables event‑driven automations across 1,000+ services and supports custom code in Node.js, Python, Go, or Bash.
by elie222
Organizes email inbox, drafts replies in the user's tone, tracks follow‑ups, and provides analytics to achieve inbox zero quickly.
by grab
Enables Cursor AI to read and programmatically modify Figma designs through a Model Context Protocol integration.
by CursorTouch
Enables AI agents to control the Windows operating system, performing file navigation, application launching, UI interaction, QA testing, and other automation tasks through a lightweight server.
by ahujasid
Enables Claude AI to control Ableton Live in real time, allowing AI‑driven creation, editing, and playback of tracks, clips, instruments, and effects through a socket‑based server.
by leonardsellem
Provides tools and resources to enable AI assistants to manage and execute n8n workflows via natural language commands.