by ChronulusAI
Provides a Model Context Protocol (MCP) server that enables Claude to interact with Chronulus AI forecasting and prediction agents.
Chronulus MCP Server exposes Chronulus AI forecasting and prediction agents through the Model Context Protocol, allowing Claude (desktop or web) to invoke forecasting tools, retrieve explanations, and work with various file types.
uvx
.claude_desktop_config.json
with the appropriate command and environment variable CHRONULUS_API_KEY
.chronulus-agents
and can be called from prompts.Q: Which command should I use if I get ENOENT
errors?
A: Ensure the full path to the executable (python, uvx, etc.) is provided, or install the missing tool.
Q: Can I run the server on Windows?
A: Yes. Use the Docker method or install via pip/uvx; configure the Windows config path %APPDATA%\Claude\claude_desktop_config.json
.
Q: Do I need to install additional servers? A: Only if your workflow requires them (e.g., filesystem or fetch). They can be added to the same config file.
Q: How do I supply my API key?
A: Set CHRONULUS_API_KEY
in the env
section of the server entry or expose it as an environment variable on the host.
Claude for Desktop is currently available on macOS and Windows.
Install Claude for Desktop here
Follow the general instructions here to configure the Claude desktop client.
You can find your Claude config at one of the following locations:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
Then choose one of the following methods that best suits your needs and add it to your claude_desktop_config.json
(Option 1) Install release from PyPI
pip install chronulus-mcp
(Option 2) Install from Github
git clone https://github.com/ChronulusAI/chronulus-mcp.git
cd chronulus-mcp
pip install .
{
"mcpServers": {
"chronulus-agents": {
"command": "python",
"args": ["-m", "chronulus_mcp"],
"env": {
"CHRONULUS_API_KEY": "<YOUR_CHRONULUS_API_KEY>"
}
}
}
}
Note, if you get an error like "MCP chronulus-agents: spawn python ENOENT",
then you most likely need to provide the absolute path to python
.
For example /Library/Frameworks/Python.framework/Versions/3.11/bin/python3
instead of just python
Here we will build a docker image called 'chronulus-mcp' that we can reuse in our Claude config.
git clone https://github.com/ChronulusAI/chronulus-mcp.git
cd chronulus-mcp
docker build . -t 'chronulus-mcp'
In your Claude config, be sure that the final argument matches the name you give to the docker image in the build command.
{
"mcpServers": {
"chronulus-agents": {
"command": "docker",
"args": ["run", "-i", "--rm", "-e", "CHRONULUS_API_KEY", "chronulus-mcp"],
"env": {
"CHRONULUS_API_KEY": "<YOUR_CHRONULUS_API_KEY>"
}
}
}
}
uvx
will pull the latest version of chronulus-mcp
from the PyPI registry, install it, and then run it.
{
"mcpServers": {
"chronulus-agents": {
"command": "uvx",
"args": ["chronulus-mcp"],
"env": {
"CHRONULUS_API_KEY": "<YOUR_CHRONULUS_API_KEY>"
}
}
}
}
Note, if you get an error like "MCP chronulus-agents: spawn uvx ENOENT", then you most likely need to either:
uvx
. For example /Users/username/.local/bin/uvx
instead of just uvx
In our demo, we use third-party servers like fetch and filesystem.
For details on installing and configure third-party server, please reference the documentation provided by the server maintainer.
Below is an example of how to configure filesystem and fetch alongside Chronulus in your claude_desktop_config.json
:
{
"mcpServers": {
"chronulus-agents": {
"command": "uvx",
"args": ["chronulus-mcp"],
"env": {
"CHRONULUS_API_KEY": "<YOUR_CHRONULUS_API_KEY>"
}
},
"filesystem": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-filesystem",
"/path/to/AIWorkspace"
]
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
}
To streamline your experience using Claude across multiple sets of tools, it is best to add your preferences to under Claude Settings.
You can upgrade your Claude preferences in a couple ways:
Settings -> General -> Claude Settings -> Profile (tab)
Profile (tab)
Preferences are shared across both Claude for Desktop and Claude.ai (the web interface). So your instruction need to work across both experiences.
Below are the preferences we used to achieve the results shown in our demos:
## Tools-Dependent Protocols
The following instructions apply only when tools/MCP Servers are accessible.
### Filesystem - Tool Instructions
- Do not use 'read_file' or 'read_multiple_files' on binary files (e.g., images, pdfs, docx) .
- When working with binary files (e.g., images, pdfs, docx) use 'get_info' instead of 'read_*' tools to inspect a file.
### Chronulus Agents - Tool Instructions
- When using Chronulus, prefer to use input field types like TextFromFile, PdfFromFile, and ImageFromFile over scanning the files directly.
- When plotting forecasts from Chronulus, always include the Chronulus-provided forecast explanation below the plot and label it as Chronulus Explanation.
Please log in to share your review and rating for this MCP.
{ "mcpServers": { "chronulus-agents": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "CHRONULUS_API_KEY", "chronulus-mcp" ], "env": { "CHRONULUS_API_KEY": "<YOUR_CHRONULUS_API_KEY>" } } } }
Explore related MCPs that share similar capabilities and solve comparable challenges
by modelcontextprotocol
An MCP server implementation that provides a tool for dynamic and reflective problem-solving through a structured thinking process.
by danny-avila
Provides a self‑hosted ChatGPT‑style interface supporting numerous AI models, agents, code interpreter, image generation, multimodal interactions, and secure multi‑user authentication.
by block
Automates engineering tasks on local machines, executing code, building projects, debugging, orchestrating workflows, and interacting with external APIs using any LLM.
by RooCodeInc
Provides an autonomous AI coding partner inside the editor that can understand natural language, manipulate files, run commands, browse the web, and be customized via modes and instructions.
by pydantic
A Python framework that enables seamless integration of Pydantic validation with large language models, providing type‑safe agent construction, dependency injection, and structured output handling.
by lastmile-ai
Build effective agents using Model Context Protocol and simple, composable workflow patterns.
by mcp-use
A Python SDK that simplifies interaction with MCP servers and enables developers to create custom agents with tool‑calling capabilities.
by nanbingxyz
A cross‑platform desktop AI assistant that connects to major LLM providers, supports a local knowledge base, and enables tool integration via MCP servers.
by gptme
Provides a personal AI assistant that runs directly in the terminal, capable of executing code, manipulating files, browsing the web, using vision, and interfacing with various LLM providers.