by aliyun
Provides a universal interface for AI agents to access AnalyticDB PostgreSQL, enabling metadata retrieval, SQL execution, graphRAG operations, and LLM memory management.
The server acts as a bridge between AI agents and AnalyticDB PostgreSQL databases, allowing agents to fetch schema information, run SELECT/DML/DDL statements, obtain execution plans, and interact with integrated GraphRAG and LLM memory services.
uv
, or install the PyPI package adbpg_mcp_server
via pip install adbpg_mcp_server
.mcpServers
with the appropriate command, arguments, and required environment variables (database connection details, GraphRAG keys, LLM‑memory keys).uv run adbpg-mcp-server
or uvx adbpg_mcp_server
).uv
) and pip‑installed package (uvx
).mcp>=1.4.0
, psycopg>=3.1.0
, python-dotenv>=1.0.0
, pydantic>=2.0.0
.uv
(or uvx
for the pip package). Adjust the command
and args
accordingly.AnalyticDB PostgreSQL MCP Server serves as a universal interface between AI Agents and AnalyticDB PostgreSQL databases. It enables seamless communication between AI Agents and AnalyticDB PostgreSQL, helping AI Agents retrieve database metadata and execute SQL operations.
Download from Github
git clone https://github.com/aliyun/alibabacloud-adbpg-mcp-server.git
Add the following configuration to the MCP client configuration file:
"mcpServers": {
"adbpg-mcp-server": {
"command": "uv",
"args": [
"--directory",
"/path/to/adbpg-mcp-server",
"run",
"adbpg-mcp-server"
],
"env": {
"ADBPG_HOST": "host",
"ADBPG_PORT": "port",
"ADBPG_USER": "username",
"ADBPG_PASSWORD": "password",
"ADBPG_DATABASE": "database",
"GRAPHRAG_API_KEY": "graphrag llm api key",
"GRAPHRAG_BASE_URL": "graphrag llm base url",
"GRAPHRAG_LLM_MODEL": "graphrag llm model name",
"GRAPHRAG_EMBEDDING_MODEL": "graphrag embedding model name",
"GRAPHRAG_EMBEDDING_API_KEY": "graphrag embedding api key",
"GRAPHRAG_EMBEDDING_BASE_URL": "graphrag embedding url",
"LLMEMORY_API_KEY": "llm memory api_key",
"LLMEMORY_BASE_URL": "llm memory base_url",
"LLMEMORY_LLM_MODEL": "llm memory model name",
"LLMEMORY_EMBEDDING_MODEL": "llm memory embedding model name"
}
}
}
pip install adbpg_mcp_server
"mcpServers": {
"adbpg-mcp-server": {
"command": "uvx",
"args": [
"adbpg_mcp_server"
],
"env": {
"ADBPG_HOST": "host",
"ADBPG_PORT": "port",
"ADBPG_USER": "username",
"ADBPG_PASSWORD": "password",
"ADBPG_DATABASE": "database",
"GRAPHRAG_API_KEY": "graphrag api_key",
"GRAPHRAG_BASE_URL": "graphrag base_url",
"GRAPHRAG_LLM_MODEL": "graphrag model name",
"GRAPHRAG_EMBEDDING_MODEL": "graphrag embedding model name",
"GRAPHRAG_EMBEDDING_API_KEY": "graphrag embedding api key",
"GRAPHRAG_EMBEDDING_BASE_URL": "graphrag embedding url",
"LLMEMORY_API_KEY": "llm memory api_key",
"LLMEMORY_BASE_URL": "llm memory base_url",
"LLMEMORY_LLM_MODEL": "llm memory model name",
"LLMEMORY_EMBEDDING_MODEL": "llm memory embedding model name"
}
}
}
execute_select_sql
: Execute SELECT SQL queries on the AnalyticDB PostgreSQL server
execute_dml_sql
: Execute DML (INSERT, UPDATE, DELETE) SQL queries on the AnalyticDB PostgreSQL server
execute_ddl_sql
: Execute DDL (CREATE, ALTER, DROP) SQL queries on the AnalyticDB PostgreSQL server
analyze_table
: Collect table statistics
explain_query
: Get query execution plan
adbpg_graphrag_upload
filename
(text
): The name of the file to be uploaded.context
(text
): The textual content of the file.adbpg_graphrag_query
query_str
(text
): The query content.query_mode
(text
): The query mode, choose from [bypass, naive, local, global, hybrid, mix]
. If null, defaults to mix
.adbpg_graphrag_upload_decision_tree
root_node
. If the root_node
does not exist, a new decision tree will be created.context
(text
): The textual representation of the decision tree.root_node
(text
): The content of the root node.adbpg_graphrag_append_decision_tree
root_node_id
.context
(text
): The textual representation of the subtree.root_node_id
(text
): The ID of the node to which the subtree will be appended.adbpg_graphrag_delete_decision_tree
root_node_entity
.root_node_entity
(text
): The ID of the root node of the sub-decision tree to be deleted.adbpg_llm_memory_add
Description: Add LLM long memory with a specific user, run or agent.
Parameters:
messages
(json
): The messages.user_id
(text
): User id.run_id
(text
): Run id.agent_id
(text
): Agent id.metadata
(json
): The metadata json(optional).memory_type
(text
): The memory type(optional).prompt
(text
): The prompt(optional).Note:
At least one of user_id
, run_id
, or agent_id
should be provided.
adbpg_llm_memory_get_all
Description: Retrieves all memory records associated with a specific user, run or agent.
Parameters:
user_id
(text
): User ID.run_id
(text
): Run ID.agent_id
(text
): Agent ID.Note:
At least one of user_id
, run_id
, or agent_id
should be provided.
adbpg_llm_memory_search
Description: Retrieves memories relevant to the given query for a specific user, run, or agent.
Parameters:
query
(text
): The search query string.user_id
(text
): User ID.run_id
(text
): Run ID.agent_id
(text
): Agent ID.filter
(json
): Additional filter conditions in JSON format (optional).Note:
At least one of user_id
, run_id
, or agent_id
should be provided.
adbpg_llm_memory_delete_all
:
Description: Delete all memory records associated with a specific user, run or agent.
Parameters:
user_id
(text
): User ID.run_id
(text
): Run ID.agent_id
(text
): Agent ID.Note:
At least one of user_id
, run_id
, or agent_id
should be provided.
adbpg:///schemas
: Get all schemas in the databaseadbpg:///{schema}/tables
: List all tables in a specific schemaadbpg:///{schema}/{table}/ddl
: Get table DDLadbpg:///{schema}/{table}/statistics
: Show table statisticsMCP Server requires the following environment variables to connect to AnalyticDB PostgreSQL instance:
ADBPG_HOST
: Database host addressADBPG_PORT
: Database portADBPG_USER
: Database usernameADBPG_PASSWORD
: Database passwordADBPG_DATABASE
: Database nameMCP Server requires the following environment variables to initialize graphRAG and llm memory server:
GRAPHRAG_API_KEY
: API key for LLM provider
GRAPHRAG_BASE_URL
: Base URL for LLM service endpoint
GRAPHRAG_LLM_MODEL
: LLM model name or identifier
GRAPHRAG_EMBEDDING_MODEL
: Embedding model name or identifier
GRAPHRAG_EMBEDDING_API_KEY
: API key for embedding model provider
GRAPHRAG_EMBEDDING_BASE_URL
: Base URL for embedding service endpoint
GRAPHRAG_LANGUAGE
: (Optional)The language used by graphrag. Defaults to English if not set.
GRAPHRAG_ENTITY_TYPES
: (Optional) Specifies the types of entity nodes to be extracted when parsing the document to generate the knowledge graph.
GRAPHRAG_RELATIONSHIP_TYPES
: (Optional) Specifies the types of relationship edges to be extracted when parsing the document to generate the knowledge graph.
LLMEMORY_API_KEY
: API key for LLM provider or embedding API
LLMEMORY_BASE_URL
: Base URL for LLM or embedding service endpoint
LLMEMORY_LLM_MODEL
: LLM model name or identifier
LLMEMORY_EMBEDDING_MODEL
: Embedding model name or identifier
# Create and activate virtual environment
uv venv .venv
source .venv/bin/activate # Linux/Mac
# or
.venv\Scripts\activate # Windows
# Install dependencies
uv pip install -e .
# Run server
uv run adbpg-mcp-server
Please log in to share your review and rating for this MCP.
{ "mcpServers": { "adbpg-mcp-server": { "command": "uv", "args": [ "run", "adbpg-mcp-server" ], "env": { "ADBPG_HOST": "<YOUR_HOST>", "ADBPG_PORT": "<YOUR_PORT>", "ADBPG_USER": "<YOUR_USERNAME>", "ADBPG_PASSWORD": "<YOUR_PASSWORD>", "ADBPG_DATABASE": "<YOUR_DATABASE>", "GRAPHRAG_API_KEY": "<YOUR_GRAPHRAG_API_KEY>", "GRAPHRAG_BASE_URL": "<YOUR_GRAPHRAG_BASE_URL>", "GRAPHRAG_LLM_MODEL": "<YOUR_GRAPHRAG_LLM_MODEL>", "GRAPHRAG_EMBEDDING_MODEL": "<YOUR_GRAPHRAG_EMBEDDING_MODEL>", "GRAPHRAG_EMBEDDING_API_KEY": "<YOUR_GRAPHRAG_EMBEDDING_API_KEY>", "GRAPHRAG_EMBEDDING_BASE_URL": "<YOUR_GRAPHRAG_EMBEDDING_BASE_URL>", "LLMEMORY_API_KEY": "<YOUR_LLMEMORY_API_KEY>", "LLMEMORY_BASE_URL": "<YOUR_LLMEMORY_BASE_URL>", "LLMEMORY_LLM_MODEL": "<YOUR_LLMEMORY_LLM_MODEL>", "LLMEMORY_EMBEDDING_MODEL": "<YOUR_LLMEMORY_EMBEDDING_MODEL>" } } } }
Explore related MCPs that share similar capabilities and solve comparable challenges
by googleapis
An MCP server that streamlines database tool development by handling connection pooling, authentication, observability, and secure access, allowing agents to interact with databases via natural language.
by bytebase
Provides a universal gateway that lets MCP‑compatible clients explore and query MySQL, PostgreSQL, SQL Server, MariaDB, and SQLite databases through a single standardized interface.
by designcomputer
Enables secure interaction with MySQL databases via the Model Context Protocol, allowing AI applications to list tables, read contents, and execute queries safely.
by benborla
Provides read‑only access to MySQL databases for large language models, allowing schema inspection and safe execution of SQL queries.
by ClickHouse
Enables AI assistants to run read‑only ClickHouse queries, list databases and tables, and execute embedded chDB queries through an MCP interface.
by chroma-core
Offers an MCP server exposing Chroma's vector database capabilities for LLM applications, supporting collection and document management, multiple embedding functions, and flexible client types such as in‑memory, persistent, HTTP, and cloud.
by kiliczsh
Enables LLMs to interact with MongoDB databases via a standardized interface, offering schema inspection, query execution, aggregation, and write capabilities, with optional read‑only mode and smart ObjectId handling.
by domdomegg
Provides read and write access to Airtable bases for AI systems, enabling inspection of schemas and manipulation of records.
by XGenerationLab
A Model Context Protocol (MCP) server that enables natural language queries to databases