by WaveSpeedAI
Provides a Model Control Protocol server that enables access to WaveSpeed AI’s image and video generation capabilities, supporting text‑to‑image, image‑to‑image, inpainting, and dynamic video creation with flexible resource handling and robust logging.
Enables client applications to invoke WaveSpeed AI’s advanced image and video generation services through a standardized MCP interface. It abstracts API interaction, polling, and resource management, allowing tools like Claude Desktop to call generation functions as native MCP tools.
pip install wavespeed-mcp
WAVESPEED_API_KEY
or the --api-key
argument.wavespeed-mcp --api-key your_api_key_here
python -m wavespeed_mcp --api-key your_api_key_here --config-path /path/to/claude/config
{
"mcpServers": {
"Wavespeed": {
"command": "wavespeed-mcp",
"env": { "WAVESPEED_API_KEY": "your_key" }
}
}
}
Q: Which Python version is required? A: Python 3.11 or newer.
Q: How do I choose the resource output mode?
A: Set WAVESPEED_API_RESOURCE_MODE
to url
, base64
, or local
(default url
).
Q: Can I customize API endpoints?
A: Yes, via environment variables such as WAVESPEED_API_TEXT_TO_IMAGE_ENDPOINT
.
Q: Where are generated files saved by default?
A: To ~/Desktop
unless overridden by WAVESPEED_MCP_BASE_PATH
.
Q: How is logging controlled?
A: Through WAVESPEED_LOG_LEVEL
(DEBUG, INFO, WARNING, ERROR).
WavespeedMCP is a Model Control Protocol (MCP) server implementation for WaveSpeed AI services. It provides a standardized interface for accessing WaveSpeed's image and video generation capabilities through the MCP protocol.
Install directly from PyPI:
pip install wavespeed-mcp
To use WavespeedMCP with your IDE or application, add the following configuration:
{
"mcpServers": {
"Wavespeed": {
"command": "wavespeed-mcp",
"env": {
"WAVESPEED_API_KEY": "wavespeedkey"
}
}
}
}
Start the WavespeedMCP server:
wavespeed-mcp --api-key your_api_key_here
WavespeedMCP can be integrated with Claude Desktop. To generate the necessary configuration file:
python -m wavespeed_mcp --api-key your_api_key_here --config-path /path/to/claude/config
This command generates a claude_desktop_config.json
file that configures Claude Desktop to use WavespeedMCP tools. After generating the configuration:
wavespeed-mcp
commandWavespeedMCP can be configured through:
Environment Variables:
WAVESPEED_API_KEY
: Your WaveSpeed API key (required)WAVESPEED_API_HOST
: API host URL (default: https://api.wavespeed.ai)WAVESPEED_MCP_BASE_PATH
: Base path for output files (default: ~/Desktop)WAVESPEED_API_RESOURCE_MODE
: Resource output mode (options: url, base64, local; default: url)WAVESPEED_LOG_LEVEL
: Logging level (options: DEBUG, INFO, WARNING, ERROR; default: INFO)WAVESPEED_API_TEXT_TO_IMAGE_ENDPOINT
: Custom endpoint for text-to-image generation (default: /wavespeed-ai/flux-dev)WAVESPEED_API_IMAGE_TO_IMAGE_ENDPOINT
: Custom endpoint for image-to-image generation (default: /wavespeed-ai/flux-kontext-pro)WAVESPEED_API_VIDEO_ENDPOINT
: Custom endpoint for video generation (default: /wavespeed-ai/wan-2.1/i2v-480p-lora)Command-line Arguments:
--api-key
: Your WaveSpeed API key--api-host
: API host URL--config
: Path to configuration fileConfiguration File (JSON format):
See wavespeed_mcp_config_demo.json
for an example.
WavespeedMCP follows a clean, modular architecture:
server.py
: Core MCP server implementation with tool definitionsclient.py
: Optimized API client with intelligent pollingutils.py
: Comprehensive utility functions for resource handlingexceptions.py
: Specialized exception hierarchy for error handlingconst.py
: Constants and default configuration valuespip install -e ".[dev]"
Run the test suite:
pytest
Or with coverage reporting:
pytest --cov=wavespeed_mcp
This project is licensed under the MIT License - see the LICENSE file for details.
For support or feature requests, please contact the WaveSpeed AI team at support@wavespeed.ai.
Please log in to share your review and rating for this MCP.
{ "mcpServers": { "wavespeed": { "command": "wavespeed-mcp", "args": [], "env": { "WAVESPEED_API_KEY": "<YOUR_API_KEY>" } } } }
Explore related MCPs that share similar capabilities and solve comparable challenges
by GongRzhe
Generate chart images via QuickChart.io using MCP tools, supporting a wide range of chart types and customizable configurations.
by GongRzhe
Provides image generation capabilities using the Replicate Flux model.
by felores
Generate image and video creatives using Placid.app templates within MCP compatible hosts.
by nkapila6
Generate custom AI‑powered memes and convert them into Telegram or WhatsApp stickers without requiring external APIs.
by jacwu
Provides a bridge between Azure OpenAI's DALL‑E 3 image generation capability and MCP clients, enabling generation and download of images via defined tools.
by zed-industries
A high‑performance, multiplayer code editor designed for speed and collaboration.
by modelcontextprotocol
A Model Context Protocol server that provides web content fetching capabilities.
by modelcontextprotocol
Model Context Protocol Servers
by modelcontextprotocol
An MCP server implementation that provides a tool for dynamic and reflective problem-solving through a structured thinking process.